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ABSTRACT

Objective: The objectives of this research are to identify the potentials of active phytochemicals from Ocimum sanctum as anticancer agents, by 
inhibiting the epidermal growth factor receptor (EGFR), one of the highly expressed proteins inducing metastasis in oral squamous cell carcinoma 
(OSCC) as well as other cancers.

Methods: The phytochemicals found in O. sanctum were identified and downloaded from online chemical databases. The target protein was retrieved 
from the Protein Data Bank. Virtual screening using glide protocols of high throughput virtual screening and molecular docking using standard 
precision and extra precision (XP) were carried out. The binding energies and the important physicochemical properties of the compounds were also 
determined.

Results: A total number of 210 compounds from O. sanctum were screened against EGFR. Lipinski rule was followed to find the compounds with 
favorable drug absorptive properties. The shortlisted compounds, namely luteolin, apigenin, and isothymusin, possess high Glide scores (kcal/mol) of 
−9.98, −9.51, and −9.45 and binding energies (kcal/mol) of −42.63, −48.28, and −44.95, respectively.

Conclusion: Among the three compounds, Isothymusin was not yet been reported to posess anticancer activity. Our study suggest this compound as 
a potential chemotherapeutic agent for treating OSCC. They function by inhibiting the activity of metastasis - inducing protein EGFR.

Keywords: Ocimum sanctum, Phytochemicals, Oral squamous cell carcinoma, Epidermal growth factor receptor, Docking, Binding energy and Lipinski 
rule.

INTRODUCTION

Oral squamous cell carcinoma (OSCC)
Cancer is one of the leading causes of death worldwide [1]. Among 
all the cancers, oral cancer is most commonly diagnosed, especially 
in developing countries [2]. OSCC is one of the most leading cancer-
causing deaths. Although several treatment options are available for 
cancer, a promising one is yet to be identified as the already available 
ones are either not effective or they cause side effects.

Cancer and epidermal growth factor receptor (EGFR)
Oral cancer is the sixth most common cancer worldwide [3]. In the 
majority of the OSCC cases, an association of EGFR (EGFR/ErB1/HER1) 
has been reported in promoting aggressiveness, metastasis, poor 
prognosis, as well as anticancer therapy resistance [4]. This protein 
has also been found to be expressed in several other cancers as well. 
EGFR is a tyrosine kinase receptor which belongs to the family of ErbB 
and is a receptor of EGF as well as transforming growth factor alpha. 
Resistance to chemotherapeutic agents used in treating OSCC was 
found to be associated with higher expression of EGFR. They showed 
resistance against drugs such as 5-fluorouracil, cisplatin, doxorubicin, 
and cyclophosphamide. Cetuximab is the FDA approved drug presently 
used in treating cancer by inhibiting EGFR [5]. However, these drugs 
cannot be considered an outstanding one and are effective only as a 
first-line treatment option in combination with platinum [6].

Ocimum sanctum
“Return to Nature” is nowadays a trend [7]. Medicinal plants have been 
used since long time for curing several disease. This is because the plants 

are a prominent hub of a wide variety of active chemicals. To meet their 
primary health-care needs, most of the developing and underdeveloped 
countries in the world depend on plants as a source of medicine. One 
such plant is O. sanctum Linn. commonly called as tulsi or holy basil 
whose entire part possesses medicinal properties. It is considered as 
the “queen of herbs.” They are used in treating several ailments which 
even include cancers [8]. Hence, for this study, the phytochemicals from 
O. sanctum were selected for screening against EGFR.

Classification of O. sanctum
• Kingdom: Plantae.
• Subkingdom: Viridiplantae.
• Infrakingdom: Streptophyta.
• Superdivision: Embryophyta.
• Phylum: Tracheophyta.
• Subdivision: Spermatophytina.
• Class: Magnoliopsida.
• Superorder: Asteranae.
• Order: Lamiales.
• Family: Lamiaceae.
• Genus: Ocimum.
• Species: O. sanctum.

METHODS

Phytochemical detection and structure retrieval
The phytochemicals present in the plant O. Sanctum were determined 
in two ways. One was through the literature survey of published 
research articles related to chemical constituents of O. sanctum [6-15] 
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and the other one by querying phytochemical databases. Along with 
this, Dr. Duke’s Phytochemical and Ethnobotanical Databases of the 
United States Department of Agriculture [16] which provided the in-
depth knowledge regarding the phytochemicals, as well as bioactivity of 
the plant, was also used for collecting the data. A total of 14 compounds 
from Dr. Duke’s Phytochemical and Ethnobotanical Databases and 196 
unique compounds (excluding those reported in the database) were 
identified. The chemical structure of these compounds for docking 
was retrieved from PubChem database hosted by the National Center 
for Biotechnology Information [17]. Those structures which were not 
available with PubChem were retrieved from the ChemSpider database 
of Royal Society of Chemistry [18].

Retrieval of target structure and docking
The target structure of EGFR with PDB ID: 5X2C was retrieved from 
Protein Data Bank. It belongs to the classification of transferase proteins 
of Homo sapiens. The three-dimensional structure was determined by 
X-ray diffraction method. It is with a resolution of 2.05 Å. The structure 
is with two chains, whereas the cocrystal ligand showed interaction 
with the chain A. The cocrystal ligand is 9-cyclopentyl-N2-[4-(4-
methyl piperazine-1-yl) phenyl]-N8-phenyl-purine-2,8-diamine. The 
molecular formula of this ligand is C27 H32 N8 [19].

Protein and ligand preparations
Protein preparation was carried out by removing the water molecules 
present with the crystallized structure of the target. Ligand preparation 
was also carried out. This ensures the conversion of the ligand format 
into a single format accessible by Maestro for virtual screening [20].

Generation of grid
The binding site is a specific area of the target protein to which the 
ligands are made to interact during docking. Specifying the binding site 
of the target protein is one of the important steps that aid docking [21]. 
For the current study, binding site to which the cocrystal ligand bound 
was determined and selected. Based on this, a grid was generated and 
docking was carried out.

Docking
The three-dimensional structure of the target protein EGFR (5X2C) 
was docked with the 210 unique ligands from O. sanctum using Glide 
protocol in Maestro Schrodinger, commercial software for molecular 
modeling and visualization program for drug design and material 
science. Based on the Lipinski rule, the compounds were screened and 
only those compounds that satisfied the Lipinski rule were further 
used for docking to maximize the screening yield with favorable 
pharmacokinetic properties [22,23]. Three different virtual screening 
methods were adapted to improve the precision of the result. They 
include high throughput virtual screening (HTVS), standard precision 
(SP), and extra precision (XP) [24-26]. The binding energies were also 
calculated.

Interaction analysis
After docking, the interaction of the ligands with the target molecule 
in the active site was analyzed. Bonded and non-bonded interactions 
made by the ligands with the target protein that ensures the strength of 
the binding were viewed and analyzed.

RESULTS

HTVS of compounds
Structure-based ligand and protein interaction were carried out using 
Maestro Schrodinger. Three different docking protocols were adapted 
to ensure and screen the best fitting ligand. The entire dataset of 
compounds was first subjected to HTVS protocol of Glide docking. It 
screened the entire set of 210 compounds. Of these compounds, only 35 
of them possessed better Glide scores.

SP docking
From the resultant ligands of HTVS, 30% of the high scoring compounds 
were then taken for further docking. These ligands were then subjected 

to SP docking of Glide. As a result, only 35 compounds were finalized 
as best fit molecules with the target structure. The name of each 
phytochemical with their Glide scores and binding energy by HTVS as 
well as SP is interpreted in Table 1.

XP docking
After HTVS and SP docking, XP docking was carried out with the 
shortlisted compounds. The phytochemicals, namely apigenin, luteolin, 
and isothymusin, from O. sanctum were considered as the best hits 
against EGFR, during this last stage of docking. They possess high Glide 
scores (kcal/mol) of −9.98, −9.52, and −9.45, respectively. The Glide 
scores and binding energies of the best hits are shown in Table 2.

Interaction of apigenin with EGFR
The compound apigenin showed strong interaction with the binding 
pocket of the protein EGFR. There were two hydrogen bonds formed 
between Met 793 with the OH and O groups of the compound. Similarly, 
two other hydrogen bonds occurred between two OH groups of the 
ligand with the amino acid Asp 855 in the protein. It formed non-
bonded interactions with other amino acids in the binding site. Fig. 1 
shows the three-dimensional image of the interaction of apigenin with 
the binding pocket of EGFR. Fig. 2 shows the two-dimensional (2D) 
representation of the interaction of this ligand with the amino acid 
residues of the protein EGFR.

Interaction of luteolin with EGFR
Luteolin formed two hydrogen bonds with Met 793 and Asp 855 using 
its hydroxyl groups. Both of the interactions are through a hydrogen 
bond formed between the amino acids and atoms in the molecule. The 
non-bonded interactions were observed with all other amino acids in 

Fig. 1: Three-dimensional representation of the interactions of 
apigenin with epidermal growth factor receptor at its binding site

Fig. 2: Two-dimensional representation of epidermal growth 
factor receptor and apigenin interactions showing hydrogen 

bonds
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the binding pocket. Fig. 3 shows the interaction of the drug molecule 
luteolin with the binding pocket of EGFR. Fig. 4 is a 2D representation 
of the drug and amino acid of EGFR interaction.

Isothymusin and EGFR interaction
The interaction of amino acids of EGFR with the flavonolic compound 
was also facilitated by the formation of hydrogen bonds as depicted in 
Figs. 5 and 6. Here, a total number of three hydrogen bonds were formed 
between the ligand and the amino acids of the protein molecule. There 
were two hydrogen bonds with Met 793 using its OH and O groups and 
a hydrogen bond with Asp 855 using its OH group. The non-bonded 
interactions dominated the binding.

DISCUSSION

The XP docking paved the way for the identification of three active 
compounds to possess anticancer activity in a higher level than that of 
the remaining other phytochemicals. Luteolin and apigenin are the drugs 
which have been already tested to prove their efficacy both in vitro and 
in vivo. It is proved that luteolin prevents tumor development largely 
by inactivating several signals and transcription pathways essential 
for cancer cells [27]. Luteolin belonging to the family of flavonoids 

is a potential anticancer agent targeting oral cancer cells along with 
metixene hydrochloride and nitazoxanide. This compound is found to 
exhibit low cytotoxicity with high efficiency when compared with other 
anticancer drugs such as cisplatin and tyrphostin [28]. Luteolin was 
also found to reduce the viability of SCC-4 cells and induced apoptosis. 
This is ensured by decreasing the expression of cyclin-dependent 
kinase (CDKs), cyclins, and phosphor-retinoblastoma antiapoptotic 
protein. This then increased the expression of proapoptotic proteins 
and activated caspase 9 and 3, with a concomitant increase in the levels 
of cleaved poly-ADP-ribose polymerase [29].

Table 1: Glide scores and binding energy of compounds which showed better interaction with target 5X2C in virtual screening 
(HTVS and SP) with their important physicochemical properties

S. No. Compound name Glide score  
(kcal/mol)

Binding energy  
(kcal/mol)

Mol. 
weight

Acceptor Donor Log P

HTVS SP HTVS SP
1. Apigenin −7.57 −8.18 −47.68 −45.73 286.23 6 4 0.96
2. Luteolin −7.56 −9.09 −43.84 −43.56 270.24 5 3 1.64
3. 5-hydroxy-2-(4-hydroxy-3-methoxy-phenyl)-6,7- 

dimethoxy-chromone
−7.41 −8.86 −46.36 −50.09 344.31 7 2 2.88

4. Phenanthrene −7.25 −7.26 −27.32 −27.32 178.23 0 0 4.46
5. (8R,9S,13S,14S,17S)-13-methyl-6,7,8,9,11,12,14,15,16,17- 

decahydrocyclopenta[a] phenanthrene-3,17-diol
−7.06 −7.00 −34.89 −36.01 272.38 2 2 4.00

6. Isothymusin −7.06 −8.60 −49.34 −47.38 330.29 7 3 2.06
7. 5-hydroxy-2-(4-hydroxyphenyl)-6,7-dimethoxy-chromone −6.04 −8.73 −41.44 −46.17 314.29 6 2 2.68
8. 4-(4-carboxyphenyl) benzoic acid −6.98 −7.73 −29.34 −32.84 242.23 4 2 2.24
9. Benzoic acid benzyl ester −6.92 −7.58 −31.38 −34.10 212.24 2 0 3.55
10. (1R,4S)-1-isopropyl-4-methyl-bicyclo[3.1.0]hexan-4-ol −6.78 −4.67 −15.53 −18.73 154.25 1 1 2.68
11. 2-ethyl-1-$l^{1}-oxidanyl-2-phenyl-pseudoindoxyl −6.72 −6.83 −28.49 −30.86 252.29 2 0 2.02
12. 6-methoxy-3-methyl-benzofuran −6.58 −6.72 −24.62 −24.72 162.18 2 0 2.65
13. Carvacrol −6.53 −7.28 −23.67 −25.22 150.22 1 1 3.29
14. 1-isopropyl-4-methyl-cyclohex-3-en-1-ol −6.43 −6.44 −17.70 −25.22 154.25 1 1 2.95
15. (1aR,4R,4aR,7R,7aS,7bS)-1,1,4,7-tetramethyl-2,3,4a, 

5,6,7,7a, 7b-octahydro-1aH-cycloprop[e] azulen-4-ol
−6.39 −6.29 −25.82 −28.08 222.37 1 1 3.88

16. 4,6,6,7,8,8-hexamethyl-1,3,4,7-tetrahydrocyclopent[g] 
isochromene

−6.36 −6.45 −31.67 −29.97 258.40 1 0 3.47

17. (1R,4aR,7R,8aR)-7-isopropenyl-1,4a-dimethyl-decalin-1-ol −6.24 −6.45 −30.29 −31.63 222.37 1 1 3.96
18. 2-(4-methylcyclohex-3-en-1-yl) propan-2-ol −6.08 −5.06 −22.19 −22.85 154.25 1 1 2.94
19. 1-isopropyl-4-methyl-cyclohexa-1,3-diene −6.07 −5.82 −19.42 −18.69 136.23 0 0 4.05
20. 1-acetyl-2-pyrrolidone −5.99 −6.57 −21.49 −21.27 127.14 2 0 0.20
21. 5-isopropyl-2-methyl-cyclohexa-1,3-diene −5.90 −5.81 −17.95 −19.03 136.23 0 0 4.01
22. Naphthalene −5.84 −6.08 −20.32 −20.29 128.17 0 0 3.35
23. p-cymene −5.80 −5.56 −19.74 −20.45 134.22 0 0 3.67
24. (5R)-5-isopropyl-2-methyl-cyclohexa-1,3-diene −5.75 −5.73 −18.02 −18.86 136.23 0 0 3.99
25. (1S,4E,8E,10R)-4,8,11,11-tetramethylbicyclo[8.1.0]

undeca-4,8-diene
−5.67 −4.27 −20.00 −22.60 204.35 0 0 4.98

26. 1-isopropyl-4-methylene-bicyclo[3.1.0]hexane −5.62 −5.68 −14.93 −16.16 136.23 0 0 3.79
27. 4-isopropylidene-1-methyl-cyclohexene −5.58 −5.64 −18.53 −20.45 136.23 0 0 4.20
28. 1-isopropyl-4-methyl-cyclohexa-1,4-diene −5.56 −5.82 −18.32 −18.69 136.23 0 0 4.03
29. Phthalic acid −5.56 −6.74 −17.34 −23.98 166.13 4 2 0.77
30. Eugenol −5.54 −5.78 -25.57 −27.01 164.20 2 1 2.73
31. pentan-2-one −5.40 −4.93 −14.64 −15.67 86.13 1 0 −1.20
32. 2-methoxy-4-[(E)-prop-1-enyl] phenol −5.37 −6.09 −24.74 −26.22 164.20 2 1 2.86
33. Camphor −5.29 −4.91 −13.11 −21.48 152.23 1 0 1.93
34. 2,2-dimethyl-3-methylene-norbornane −5.24 −5.61 −15.44 −17.68 136.23 0 0 3.24
35. (3R,4S,5R)-tetrahydropyran-2,3,4,5-tetrol −5.20 −5.60 −26.82 −28.55 150.13 5 4 −1.66
Donor: Number of hydrogen bond donors, Acceptor: Number of hydrogen bond acceptors, HTVS: High throughput virtual screening, SP: Standard precision

Table 2: The Glide scores and binding energies of the best hits 
from O. sanctum calculated using XP docking

S. No. Compound 
name

Glide score
(kcal/mol)

Glide energy
(kcal/mol)

1. Apigenin −9.98 −42.63
2. Isothymusin −9.52 −48.28
3. Luteolin −9.45 −44.95
O. sanctum: Ocimum sanctum, XP: Extra precision
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Apigenin, chemically known as 4′, 5, 7-trihydroxyflavone, belongs to 
the family of flavone [30]. Apigenin was classified as a Class II drug of 
Biopharmaceutical Classification System in a recent study [31]. When 
OSCC cell line SCC-25 was treated with apigenin, it leads to the arrest of 
the cell cycle in both G0/G1 and G2/M checkpoints. This is associated 
with decreased expression of cyclin D1 and E, and inactivation of 
CDK1 [32]. HNSCC cell lines such as CAL-27 and SCC-15 were treated 
with apigenin and proved the efficiency of this compound in inducing 
cancer healing by inhibiting survival and inducing apoptosis of the cells. 
It is also found that it reduces ligand-induced phosphorylation of EGFR 
and ErbB2 and impairs their downstream signaling [33].

The novel flavonolic compound isothymusin identified by the current 
study was also highly competitive with the above said two compounds. 
The binding energy, as well as the glide score, was also competitive with 
the remaining two drugs. Hence, it is evident from the analysis that the 
compound isothymusin can also be used as an anticancer agent for 
inhibiting EGFR expression.

CONCLUSION

The XP docking analysis of compounds from O. sanctum screened 
three best compounds as the better inhibitors of EGFR. Among the 
three compounds suggested by docking, two of them, namely luteolin 
and apigenin, were already reported to be anticancerous. The studies 
through in vitro and in vivo methods suggest the potency of these two 
compounds as high or equally important to the currently used drugs. 
This further validates the docking program. The anticancer properties 
of isothymusin have not been proven yet. As it is showing similarities 
with the other two compounds, this can also be a potential anticancer 
drug. Its anticancer activity and the interactions with EGFR were 
predicted using this study.
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