DOCKING STUDIES ON ANTIDIABETIC MOLECULAR TARGETS OF PHYTOCHEMICAL COMPOUNDS OF SYZYGIUM CUMINI (L.) SKEELS

Authors

  • Smruthi G Centre for Advanced Research in Indian System of Medicine, SASTRA University, Thanjavur, Tamilnadu, India
  • Mahadevan V Centre for Advanced Research in Indian System of Medicine, SASTRA University, Thanjavur, Tamilnadu, India
  • Vadivel V Center for Advanced Research in Indian System of MedicineSASTRA UniversityThanjavur, Tamilnadu, India
  • Brindha P Centre for Advanced Research in Indian System of Medicine, SASTRA University, Thanjavur, Tamilnadu, India

DOI:

https://doi.org/10.22159/ajpcr.2016.v9s3.14920

Abstract

ABSTRACT
Objectives: Different parts of jamun tree (Syzygium cumini L. skeels) which belongs to the family - Myrtaceae are well-known for their antidiabetic
activity. Traditional practitioners in India are using the leaf, bark, and fruits of this medicinal plant over many centuries to manage the diabetic
patients. Although several research works have been conducted to prove the efficacy of this plant extracts and also to explore the active principles of
this plant drug, there is no information regarding the interaction of phytoconstituents of jamun tree with diabetic targets at the molecular level. Hence,
this study focused to apply a computational approach to reveal the interaction of molecules of jamun tree with antidiabetic targets.
Methods: Lamarckian genetic algorithm methodology was used for docking of 22 phytoconstituents with α-amylase, a key enzyme that involved in
carbohydrate metabolism using Autodock software.
Results: Analysis of binding energy of ligands with target receptors was remarkably lower especially for friedelin (−9.54 kcal/mol), epifriedelanol
(−8.98 kcal/mol), betulinic acid (−8.60 kcal/mol), beta-sitosterol (−8.56 kcal/mol), petunidin-3-gentiobioside (−7.52 kcal/mol), kaempferol (−7.08
kcal/mol), petunidin (−6.21 kcal/mol), quercetin (−6.03 kcal/mol), myricetin (−5.80 kcal/mol), and bergenin (−5.27 kcal/mol) when compared to
the synthetic drug acarbose (−2.43 kcal/mol).
Conclusion: Potential molecules identified from this study could be considered as a lead to design/synthesize anti-diabetic drug molecules in
pharmaceutical industry.
Keywords: Jamun tree, Syzygium cumini, Phytochemicals, Diabetes, α-amylase, Molecular docking.

Downloads

Download data is not yet available.

References

Eichler HG, Korn A, Gasic S. The effect of a new specific α-amylase inhibitor on post-prandial glucose and insulin excursions in normal and Type 2 (non-insulin dependent) diabetic patients. Diabetol 1984;26:278-1.

Patwardhan B, Vaidya AD, Chorghade M. Ayurveda and natural products drug discovery. Curr Sci 2004;86:789-99.

Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002;81(1):81-100.

Mukherjee PK, Maiti K, Mukherjee K, Houghton PJ. Leads from Indian medicinal plants with hypoglycemic potentials. J Ethnopharmacol 2006;106(1):1-28.

Sagrawat H, Mann AS, Kharya MD. Pharmacological potential of Eugenia jambolana: A review. Pharmacogn Mag 2006;2:96-104.

Baliga MS, Bhat HP, Baliga BR, Wilson R, Palatty PL. Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam. (black plum): A review. Food Res Int 2011;44:1776-89.

Shrotri DS, Kelkar M, Deshmukh VK, Aiman R. Investigations of the hypoglycemic properties of Vinca rosea, Cassia auriculata and Eugenia jambolana. Indian J Med Res 1963;51:464-7.

Lal BN, Choudhuri KD. Observations on Momordica charantia Linn, (Karvellaka) and Eugenia jambolana Lam. (Jamboo) as oral antidiabetic remedies. Indian J Med Res 1968;2:161.

Chirvan-Nia P, Ratsimamanga AR. Regression of cataract and hyperglycemia in diabetic sand rats (Psammomys obesus) having received an extract of Eugenia Jambolana (Lamarck). C R Acad Sci Hebd Seances Acad Sci D 1972;274(2):254-7.

Ashok P, Daradka MM. Antidiabetic activity of Syzygium cumini seed extracts in alloxan induced diabetic mice. Hamdard Med 2001;52:41-8.

Sharma SB, Nasir A, Prabhu KM, Murthy PS, Dev G. Hypoglycaemic and hypolipidemic effect of ethanolic extract of seeds of Eugenia jambolana in alloxan-induced diabetic rabbits. J Ethnopharmacol 2003;85(2-3):201-6.

Bhat G, Zinjarde SS, Bhargava SY, Ravi Kumar A, Joshi BN. Anti-diabetic Indian plants: A good source of potent amylase inhibitors. Evid Based Complement Alternat Med 2011;2011:810207.

Bansal R, Ahmad N, Kidwai JR. Effects of oral administration of Eugenia jambolana seeds & chloropropamide on blood glucose level & pancreatic cathepsin B in rat. Indian J Biochem Biophys 1981;18(5):377.

Singh N, Gupta M. Effects of ethanolic extract of Syzygium cumini (Linn) seed powder on pancreatic islets of alloxan diabetic rats. Indian J Exp Biol 2007;45(10):861-7.

Kohli KR, Singh RH. A clinical trial of Jambu (Eugenia jambolana) in non-insulin dependent diabetes mellitus. J Res Ayurveda Siddha 1993;14:89-97.

Yadav M, Lavania A, Tomar R, Prasad GB, Jain S, Yadav H. Complementary and comparative study on hypoglycemic and antihyperglycemic activity of various extracts of Eugenia jambolana seed, Momordica charantia fruits, Gymnema sylvestre, and Trigonella foenum graecum seeds in rats. Appl Biochem Biotechnol 2010;160(8):2388-400.

Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TP. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr 2007;40(3):163-73.

Jana K, Ghosh A, Chatterjee K, Ghosh D. Antidiabetic activity of seed of Eugenia jambolana in streptozotocin induced diabetic male albino rat: An apoptotic and genomic approach. Int J Pharm Pharm Sci 2014;6:407-12.

Sinha SK, Ahmad I, Gayathri M. Antidiabetic effect of ethanol extract of Syzygium jambolanum seed (in vitro). Int J Drug Dev Res 2013;5:187-91.

Venkateswarlu G. On the nature of the colouring matter of the jambul fruit (Eugenia jambolana). J Indian Chem Soc 1952;29:434-7.

Sharma JN, Seshadri TR. Survey of anthocyanins from Indian sources: Part II. J Sci Ind Res 1955;14:211-4.

Lewis YS, Dwarakanath CT, Johar DS. Acids and sugars in Eugenia jambolana. J Sci Ind Res 1956;15:280-1.

Jain MC, Seshadri TR. Anthocyanins of Eugenia jambolana fruits. J Chem 1975;3:20-3.

Vijayanand P, Rao LJ, Narasimham P. Volatile flavour components of jamun fruit (Syzygium cumini). J Nat Prod Chem 2001;16:47-9.

Veigas JM, Narayan MS, Laxman PM, Neelwarne B. Chemical nature stability and bioefficacies of anthocyanins from fruit peel of Syzygium cumini Skeels. Food Chem 2007;105:619-27.

Morton J. Fruits of Warm Climates. Miami: Julia Morton Winterville North Carolina; 1987. p. 375-8.

Ravi K, Ramachandran B, Subramanian S. Protective effect of Eugenia jambolana seed kernel on tissue antioxidants in streptozotocin induced diabetic rats. Biol Pharm Bull 2004;27(8):1212-7.

Daulatabad CM, Mirajkar AM, Hosamani KM, Mulla GM. Epoxy and cyclopropenoid fatty acids in Syzygium cumini seed oil. J Sci Food Agric 1988;43:91-4.

Gupta GS, Sharma DP. Triterpenoid and other constituents of Eugenia jambolana leaves. Phytochem 1974;13:2013-4.

Bhatia IS, Sharma SK, Bajaj KL. Esterase and galloyl carboxylase from Eugenia jambolana leaves. Indian J Exp Biol 1974;12:550-2.

Mahmoud II, Marzouk MS, Moharram FA, El-Gindi MR, Hassan AM. Acylated flavonol glycosides from Eugenia jambolana leaves. Phytochemistry 2001;58(8):1239-44.

Timbola AK, Szpoganicz B, Branco A, Monache FD, Pizzolatti MG. A new flavonol from leaves of Eugenia jambolana. Fitoterapia 2002;73(2):174-6.

Kumar A, Naqvi AA, Kahol AP, Tandon S. Composition of leaf oil of Syzygium cumini L. from North India. Indian Perfum 2004;48:439-41.

Sengupta P, Das PB. Terpenoids and related compounds. Part IV: Terpenoids in the stem bark of Eugenia jambolana Lam. Indian Chem Soc 1965;42:255-8.

Bhargava KK, Dayal R, Seshadri TR. Chemical components of Eugenia jambolana stem bark. Curr Sci 1974;43:645-6.

Kopanski L, Schnelle G. Isolation of bergenin from barks of Syzygium cumini. Planta Med 1988;54(6):572.

Bhatia IS, Bajaj KL. Chemical constituents of the seeds and bark of Syzygium cumini. Plant Med 1975;28(4):347-52.

Nair RA, Subramanian SS. Chemical examination of the flowers of Eugenia jambolana. J Sci Ind Res 1962;21:457-8.

Vaishnava MM, Gupta KR. Isorhamnetin 3-O-rutinoside from Syzygium cumini Lam. J Indian Chem Soc 1990;67:785-6.

Vaishnava MM, Tripathy AK, Gupta KR. Flavonoid glucosides from roots of Eugenia jambolana. Fitoterapia, 1992;63:259-60.

Vikrant V, Grover JK, Tandon N, Rathi SS, Gupta N. Treatment with extracts of Momordica charantia and Eugenia jambolana prevents hyperglycemia and hyperinsulinemia in fructose fed rats. J Ethnopharmacol 2001;76(2):139-43.

Safdar M, Habibullah Khan A. Effect of jaman fruit extract on serum glucose and lipid profile in Type 2 diabetic individuals. Pak J Nutr 2006;5:573-6.

Chaturvedi A, Bhawani G, Agarwal PK, Goel S, Singh A, Goel RK. Antidiabetic and antiulcer effects of extract of Eugenia jambolana seed in mild diabetic rats: Study on gastric mucosal offensive acid-pepsin secretion. Indian J Physiol Pharmacol 2009;53(2):137-46.

Achrekar S, Kaklij GS, Pote MS, Kelkar SM. Hypoglycemic activity of Eugenia jambolana and Ficus bengalensis: Mechanism of action. In Vivo 1991;5(2):143-7.

Grover JK, Vats V, Rathi SS, Dawar R. Traditional Indian anti-diabetic plants attenuate progression of renal damage in streptozotocin induced diabetic mice. J Ethnopharmacol 2001;76(3):233-8.

Sharma SB, Nasir A, Prabhu KM, Murthy PS. Antihyperglycemic effect of the fruit-pulp of Eugenia jambolana in experimental diabetes mellitus. J Ethnopharmacol 2006;104(3):367-73.

Oliveira AC, Endringer DC, Amorim LA, das Graças L Brandão M, Coelho MM. Effect of the extracts and fractions of Baccharis trimera and Syzygium cumini on glycaemia of diabetic and non-diabetic mice. J Ethnopharmacol 2005;102(3):465-9.

Arbab AG, Akhtar T, Rab F. Hypoglycaemic activity of Eugenia jambolana leaves. Pak J Nutr 1989;28:121-35.

Shankar M, Suthakaran R. Anti-diabetic activity of hydroalcoholic extract of Eugenia jambolana leaves in alloxan induced diabetic rats. Int J Pharm Pharm Sci 2014;6:138-40.

Schossler DR, Mazzanti CM, Almeida da Luzi SC, Filappi A, Prestes D, Ferreria da Silveira A, et al. Syzygium cumini and the regeneration of insulin positive cells from the pancreatic duct. Braz J Vet Res Anim Sci 2004;41:236-9.

Villaseñor IM, Lamadrid MR. Comparative anti-hyperglycemic potentials of medicinal plants. J Ethnopharmacol 2006;104(1-2):129-31.

Kumar R, Patel DK, Prasad SK, Laloo D, Krishnamurthy S, Hemalatha S. Type 2 antidiabetic activity of bergenin from the roots of Caesalpinia digyna rottler. Fitoterapia 2012;83(2):395-401.

Gupta R, Sharma AK, Dobhal MP, Sharma MC, Gupta RS. Antidiabetic and antioxidant potential of ß-sitosterol in streptozotocin-induced experimental hyperglycemia. J Diabetes 2011;3(1):29-37.

Kumar S, Kumar V, Prakash O. Enzymes inhibition and antidiabetic effect of isolated constituents from Dillenia indica. Biomed Res Int 2013;2013:382063.

Uddin N, Hasan MR, Hossain MM, Sarker A, Hasan AH, Islam AF, et al. In vitro α-amylase inhibitory activity and in vivo hypoglycemic effect of methanol extract of Citrus macroptera Montr. fruit. Asian Pac J Trop Biomed 2014;4(6):473-9.

Akkarachiyasit S, Charoenlertkul P, Yibchok-Anun S, Adisakwattana S. Inhibitory activities of cyanidin and its glycosides and synergistic effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Int J Mol Sci 2010;11(9):3387-96.

Kato M, Tani T, Terahara N, Tsuda T. The anthocyanin delphinidin 3-rutinoside stimulates glucagon-like peptide-1 secretion in murine Glutag cell line via the Ca2/calmodulin-dependent kinase ii pathway. PLoS One 2015;10(5):e0126157.

Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N. Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. Eur J Nutr 2015;136:1456-60.

Prasad CN, Anjana T, Banerji A, Gopalakrishnapillai A. Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett 2010;584(3):531-6.

Zang Y, Sato H, Igarashi K. Anti-diabetic effects of a kaempferol glycoside-rich fraction from unripe soybean (Edamame, Glycine max L. Merrill. Jindaiâ€) leaves on KK-A(y) mice. Biosci Biotechnol Biochem 2011;75(9):1677-84.

Yagi A, Hegazy S, Kabbash A, Wahab EA. Possible hypoglycemic effect of Aloe vera L. high molecular weight fractions on Type 2 diabetic patients. Saudi Pharm J 2009;17(3):209-15.

Verma PR, Itankar PR, Arora SK. Evaluation of antidiabetic antihyperlipidemic and pancreatic regeneration, potential of aerial parts of Clitoria ternatea. Rev Bras Farmacogn 2013;23:819-29.

Li Y, Ding Y. Therapeutic potential of myricetin in diabetes mellitus. Food Sci Hum Wellness 2012;1:19-25.

You Q, Chen F, Wang X, Luo PG, Jiang Y. Inhibitory effects of muscadine anthocyanins on α-glucosidase and pancreatic lipase activities. J Agric Food Chem 2011;59(17):9506-11.

Vessal M, Hemmati M, Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol 2003;135C(3):357-64.

Published

01-12-2016

How to Cite

G, S., M. V, V. V, and B. P. “DOCKING STUDIES ON ANTIDIABETIC MOLECULAR TARGETS OF PHYTOCHEMICAL COMPOUNDS OF SYZYGIUM CUMINI (L.) SKEELS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 9, no. 9, Dec. 2016, pp. 287-93, doi:10.22159/ajpcr.2016.v9s3.14920.

Issue

Section

Original Article(s)