ANTI-MYCOBACTERIUM TUBERCULOSIS STRAIN H37RV AND IRON CHELATION ACTIVITY OF SAPPAN WOOD EXTRACT (CAESALPINIA SAPPAN L.) IN VITRO

Authors

  • Ratu Safitri Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia.
  • Ida Indrawati Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia.
  • Mas Rizky A A Syamsunarno Department of Biology, Study Program of Biotechnology, Postgraduate Study, Universitas Padjadjaran, Padjadjaran, Bandung, Indonesia.
  • Mohammad Ghozali Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
  • Basri A Gani Department of Oral Biology, Dentistry Faculty, Universitas Syiah Kuala, Banda Aceh, Indonesia.
  • Ramdan Panigoro Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.

DOI:

https://doi.org/10.22159/ajpcr.2018.v11i6.25303

Keywords:

Iron chelation, Mycobacterium tuberculosis, Caesalpinia sappan L

Abstract

Objective: The objective of this study is to determine anti-Mycobacterium tuberculosis (MTB) strain H37Rv and iron chelation activities of sappan wood extract (SWE).

Methods: The evaluation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) by proportion methods. Whereas the iron chelate in Lowenstein–Jensen (LJ) medium as the indicator of Mycobacterium growth and SWE effect.

Results: The SWE has bacteriocidal to MTB of 10−3 and 10−5 dilutions in of all concentrations (250, 500, 750, 1000, 2000, 4000, 8000, and 16000 part per millions [ppm]) also bacteriostatic in concentration 50 and 100 ppm.

Conclusion: The SWE at 100 ppm could inhibit 87% of the MTB in 10−3 and 10−5 dilutions, respectively, also to reduce to growth the colony of MTB, and has chelating effects of iron expression of LJ medium and MTB.

Downloads

Download data is not yet available.

Author Biography

Ratu Safitri, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia.

Oral Biology Department

References

De Voss JJ, Rutter K, Schroeder BG, Barry CE. Iron acquisition and metabolism by mycobacteria. J Bacteriol 1999;181:4443-51.

Zhang C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell 2014;5:750-60.

Mauliku NE, Hendro W, Saputro SH, Kristina TN. Anti-tubercular activity of extract and coumpounds of noni (Morinda citrifolia Linn). Int J Pharm Pharm Sci 2017;9:105-9.

Tyagi P, Kumar Y, Gupta D, Sing H, Kumar A. Therapeutic advancements in management of iron overload–a review. Int J Pharm Pharm Sci 2015;7:35-44.

Nirmal NP, Rajput MS, Prasad RG, Ahmad M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac J Trop Med 2015;8:421-30.

Sireeratawong S, Piyabhan P, Singhalak T, Wongkrajang Y, Temsiririrkkul R, Punsrirat J, et al. Toxicity evaluation of sappan wood extract in rats. J Med Assoc Thai 2010;93 Suppl 7:S50-7.

Safitri R, Ratningsih N, Maskoen AM, Fauziah PN, Panigoro R. The effects of Caesalpinia sappan L. Extract granule to antioxidant activity in blood serum of wistar rat (Rattus norvegicus) with excessive iron condition. Int J Pharmtech Res 2016;9:38-46.

Gagoi N, Gogoi A, Neog B. Free radical scavenging activities of Garcinia xanthochymus Hook. F and Garcinia lanceaefolia Roxb using various in vitro assay models. Asian J Pharm Clin Res 2015;8:138-41.

Symonowicz M, Kolanek M. Flavonoids and their properties to form chelate complexes. Biotechnol Food Sci 2012;76:35-41.

Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 2007;71:413-51.

Symeonidis A, Marangos M. In: Priti R, editor. Iron and Microbial Growth. Insight and Control of Infectious Disease in Global Scenario. Croatia: InTech Press; 2012. p. 289-330.

Seo H, Kim S, Mahmud HA, Islam MI, Nam KW, Lee BE, et al. In vitro antitubercular activity of 3-deoxysappanchalcone isolated from the heartwood of Caesalpinia sappan Linn. Phytother Res 2017;31:1600-6.

Gupta R, Thakur B, Singh P, Singh HB, Sharma VD, Katoch VM, et al. Antituberculosis activity of selected medicinal plants against multidrug resistent M. tuberculosis isolates. Indian J Med Res 2010;131:809-13.

Health Ministry of Indonesia. The National Guidance of Prevent the Tuberculosis. Jakarta, Indonesia: Health Ministry Press; 2014. p. 25-34.

Hu J, Chang YM, Gao SB, Hai CX, Li JS, Xie XP. Speciation analysis of trace elements Cu, Fe and Zn in serum by flame atomic absorption spectrophotometry. Guang Pu Xue Yu Guang Pu Fen Xi 2008;28:700-3.

Hafidh RR, Abdulamir AS, Vern LS, Bakar FS, Abas F, Jahanshiri F, et al. Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural product. Open Microbiol J 2011;5:96-106.

Health Ministry of Indonesia. The Technical Guidance of Identification dan sensitivity Assay of Mycobacterium tuberculosis on the Solid Medium. Jakarta, Indoensia: Health Ministry Press; 2012. p. 46-57.

Bedenic B, Zagae BZ. Effect of inoculum size on the antibacterial activity of cefpirome and cefepime against Klebsiella pneumoniae strains producing SHV extended-spectrum β-lactamases. Clin Microbiol Infect 2001;7:626-35.

Pitaloka DA, Sukandar EY. In vitro study of ursolic acid combination first-line Antituberculosis drugs against drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis. Asian J Pharm Clin Res 2017;10:216-8.

Sritharan M. Iron homeostasis in Mycobacterium tuberculosis: Mechanistic insights into siderophore-mediated iron uptake. J Bacteriol 2016;198:2399-409.

Walter ND, de Jong BC, Garcia BJ, Dolganov GM, Worodria W, Byanyima P, et al. daptation of Mycobacterium tuberculosis to impaired host immunity in HIV-infected patients. J Infect Dis 2016;214:1205-11.

Aktas AE, Yigit N, Ayyildiz A, Bastopcu A. Comparison of the Mycobacterium growth indicator tube method and the method of proportion for drug susceptibility testing of Mycobacterium tuberculosis. Eurasian J Med 2014;46:96-101.

Rodriguez GM, Smith I. Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J Bacteriol 2006;188:424-30.

Eik K, Henderson JP. Microbial copper-binding siderophores at the host-pathogen interface. J Biol Chem 2015;290:18967-74.

Hameed S, Pal R, Fatima Z. Iron acquisition mechanisms: Promising target against Mycobacterium tuberculosis. Open Microbiol J 2015;9:91-7.

Palomino JC, Martin A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel) 2014;3:317-40.

Chesdachai S, Zughaier SM, Hao L, Kempker RR, Blumberg HM, Ziegler TR. The effects of first-line anti-tuberculosis drugs on the actions of vitamin D in human macrophages. J Clin Transl Endocrinol 2016;6:23-9.

Saravanakumar S, Chandra JH. Screening of antimicrobial activity and phytochemical analysis of Ceasalpinia sappan L. J Chem Pharm Res 2013;5:171-5.

Stanley SA, Kawate T, Iwase N, Shimizu M, Clatworthy AE, Kazyanskaya E, et al. Diarylcoumarins inhibit mycolic acid biosynthesis and kill Mycobacterium tuberculosis by targeting FadD32. Proc Natl Acad Sci U S A 2013;110:11565-70.

Shah SR, Shenai S, Desai DC, Joshi A, Abraham P, Rodrigues C. Comparison of Mycobacterium tuberculosis culture using liquid culture medium and Lowenstein Jensen medium in abdominal tuberculosis. Indian J Gastroenterol 2010;29:237-9.

Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci World J 2013;2013:1-16.

Reddy PV, Puri RV, Khera A, Tyagi AK. Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the Guinea Pig model of infection. J Bacteriol 2012;194:567-75.

Published

07-06-2018

How to Cite

Safitri, R., I. Indrawati, M. R. A. A. Syamsunarno, M. Ghozali, B. A Gani, and R. Panigoro. “ANTI-MYCOBACTERIUM TUBERCULOSIS STRAIN H37RV AND IRON CHELATION ACTIVITY OF SAPPAN WOOD EXTRACT (CAESALPINIA SAPPAN L.) IN VITRO”. Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 6, June 2018, pp. 444-7, doi:10.22159/ajpcr.2018.v11i6.25303.

Issue

Section

Original Article(s)