CHIMERIC ANTIGEN RECEPTOR FOR CHRONIC LYMPHOCYTIC LEUKEMIA - A REVIEW

Authors

  • Kiruthiga Raghunathan Department of Bioengineering, B. Tech Biotechnology, School of Engineering, Vels Institute of Science, Technology and Advanced Studies, Chennai - 600 117, Tamil Nadu, India.
  • Brindha Devi P Department of Bioengineering, School of Engineering, Vels Institute of Science, Technology and Advanced Studies, Chennai - 600 117, Tamil Nadu, India.

DOI:

https://doi.org/10.22159/ajpcr.2019.v12i1.29642

Keywords:

Chimeric antigen receptor, Chronic lymphocytic leukemia, Immunotherapy

Abstract

Chronic lymphocytic leukemia cancer is a deadly one which affects the bone marrow from making it to produce more amounts of white blood cells in the humans. This disease can be treated either by radiation therapy, bone marrow transplantation, chemotherapy, or immunotherapy. In radiation therapy, the ionizing radiation is used toward the tumor cells, but the main drawback is the radiation may affect the normal cells as well. To overcome this drawback, immunotherapy chimeric antigen receptor (CAR) is used. These CAR cells will target only the antigen of the tumor cells and not damage the normal cells in the body. In this therapy, the T-cells are taken either from the patients or a healthy donor and are engineered to express the CARs which are called as CAR-T-cells. When these CAR-T-cells come in contact with the antigen present on the surface of the tumor cells, they will get activated and become toxic to the tumor cells. This new class of therapy is having a great prospect in cancer immunotherapy.

Downloads

Download data is not yet available.

Author Biographies

Kiruthiga Raghunathan, Department of Bioengineering, B. Tech Biotechnology, School of Engineering, Vels Institute of Science, Technology and Advanced Studies, Chennai - 600 117, Tamil Nadu, India.

Department of Bio-Engineering

Brindha Devi P, Department of Bioengineering, School of Engineering, Vels Institute of Science, Technology and Advanced Studies, Chennai - 600 117, Tamil Nadu, India.

Department of Bio-Engineering

References

Kipps TJ, Stevenson FK, Wu CJ, Croce CM, Packham G, Wierda WG, et al. Chronic lymphocytic leukaemia. Nat Rev Dis Primers 2017;3:16096.

Ghia P, Ferreri AM, Caligaris-Cappio F. Chronic lymphocytic leukemia. Crit Rev Oncol Hematol 2007;64:234-46.

Tam CS, O’Brien S, Wierda W, Kantarjian H, Wen S, Do KA, et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood 2008;112:975-80.

Keating MJ, O’Brien S, Albitar M, Lerner S, Plunkett W, Giles F, et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol 2005;23:4079-88.

Janssens A, Foa R, Keating M, Tatt L, Carr E. Rituximab for chronic lymhocytic leukemia in treatment-naïve and treatment-experienced patients. Contemp Oncol 2012;44:47-52.

Whang-Peng J, Knutsen T, Brereton HD, O’Donnell JF. Acute non lymphocytic leukemia and acute myeloproliferative syndrome following radiation therapy for non hodgkin’s lymphoma and chronic lymphocytic leukemia. Cytogenetic studies. Cancer 1979;44:1592-600.

Wierda WG, O’Brien S. Immunotherapy of chronic lymphocytic leukemia. Exp Rev Anticancer Ther 2001;1:73-83.

Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006;314:126-9.

Srivastava S, Riddell SR. Engineering CAR-T cells: Design concepts. Trends Immunol 2015;36:494-502.

Yonemoto J. The effects of dioxin on reproduction and development. Ind Health 2000;38:259-68.

Ngo AD, Taylor R, Roberts CL, Nguyen TV. Association between agent orange and birth defects: Systematic review and meta-analysis. Int J Epidemiol 2006;35:1220-30.

Palmer MG. The case of agent orange. Contemp Southeast Asia 2007;1:172-95.

Richardson DB, Wing S, Schroeder J, Schmitz-Feuerhake I, Hoffmann W. Ionizing radiation and chronic lymphocytic leukemia. Environ Health Perspect 2005;113:1-5.

Hartmann J, Schüßler-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 2017;9:1183-97.

Liu J, Zhong JF, Zhang X, Zhang C. Allogeneic CD19-CAR-T cell infusion after allogeneic hematopoietic stem cell transplantation in B cell malignancies. J Hematol Oncol 2017;10:35.

Ramos CA, Dotti G. Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy. Expert Opin Biol Ther 2011;11:855 73.

Zhang C, Liu J, Zhong JF, Zhang X. Engineering CAR-T cells. Biomark Res 2017;5:22.

Baldo BA. Chimeric fusion proteins used for therapy: Indications, mechanisms, and safety. Drug Saf 2015;38:455-79.

Tasian SK, Gardner RA. CD19-redirected chimeric antigen receptor-modified T cells: A promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL). Ther Adv Hematol 2015;6:228-41.

Hombach A, Hombach AA, Abken H. Adoptive immunotherapy with genetically engineered T cells: Modification of the IgG1 fc ‘spacer’ domain in the extracellular moiety of chimeric antigen receptors avoids ‘off-target’ activation and unintended initiation of an innate immune response. Gene Ther 2010;17:1206-13.

Loskog A, Giandomenico V, Rossig C, Pule M, Dotti G, Brenner MK, et al. Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia 2006;20:1819-28.

Abrusán G, Marsh JA. Alpha helices are more robust to mutations than beta strands. PLoS Comput Biol 2016;12:e1005242.

Irving BA, Weiss A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 1991;64:891-901.

Smith JW. Apheresis techniques and cellular immunomodulation. Ther Apher 1997;1:203-6.

Lee G, Arepally GM. Anticoagulation techniques in apheresis: From heparin to citrate and beyond. J Clin Apher 2012;27:117-25.

Riddell SR, Sommermeyer D, Berger C, Liu LS, Balakrishnan A, Salter A, et al. Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition. Cancer J 2014;20:141 4.

Levine BL, Bernstein WB, Connors M, Craighead N, Lindsten T, Thompson CB, et al. Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J Immunol 1997;159:5921-30.

Suhoski MM, Golovina TN, Aqui NA, Tai VC, Varela-Rohena A, Milone MC, et al. Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. Mol Ther 2007;15:981-8.

Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 1989;86:10024-8.

Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A 1993;90:720-4.

Brocker T. Chimeric fv-zeta or fv-epsilon receptors are not sufficient to induce activation or cytokine production in peripheral T cells. Blood 2000;96:1999-2001.

Bridgeman JS, Hawkins RE, Bagley S, Blaylock M, Holland M, Gilham DE, et al. The optimal antigen response of chimeric antigen receptors harboring the CD3zeta transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. J Immunol 2010;184:6938-49.

Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 2011;121:1822-6.

Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009;17:1453-64.

Marin V, Pizzitola I, Agostoni V, Attianese GM, Finney H, Lawson A, et al. Cytokine-induced killer cells for cell therapy of acute myeloid leukemia: Improvement of their immune activity by expression of CD33-specific chimeric receptors. Haematologica 2010;95:2144-52.

Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG, et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: Pilot clinical trial results. Blood 2012;119:3940-50.

Vormittag P, Gunn R, Ghorashian S, Veraitch FS. A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol 2018;53:164-81.

Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011;3:95ra73.

Hollyman D, Stefanski J, Przybylowski M, Bartido S, Borquez- Ojeda O, Taylor C, et al. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 2009;32:169-80.

Barrett DM, Singh N, Liu X, Jiang S, June CH, Grupp SA, et al. Relation of clinical culture method to T-cell memory status and efficacy in xenograft models of adoptive immunotherapy. Cytotherapy 2014;16:619-30.

Guo B, Chen M, Han Q, Hui F, Dai H, Zhang W, et al. CD138-directed adoptive immunotherapy of chimeric antigen receptor (CAR)-modified T cells for multiple myeloma. J Cell Immunother 2016;2:28-35.

Ghorashian S, Pule M, Amrolia P. CD19 chimeric antigen receptor T cell therapy for haematological malignancies. Br J Haematol 2015;169:463 78.

Ivics Z, Hackett PB, Plasterk RH, Izsvák Z. Molecular reconstruction of sleeping beauty, a tc1-like transposon from fish, and its transposition in human cells. Cell 1997;91:501-10.

Kebriaei P, Huls H, Singh H, Olivares S, Figliola M, Maiti S, et al. Adoptive therapy using sleeping beauty gene transfer system and artificial antigen presenting cells to manufacture T cells expressing CD19-specific chimeric antigen receptor. Blood 2014;124:311.

Singh H, Figliola MJ, Dawson MJ, Huls H, Olivares S, Switzer K, et al. Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies. Cancer Res 2011;71:3516-27.

Kebriaei P, Ciurea SO, Huls MH, Singh H, Olivares S, Su S, et al. Pre-emptive donor lymphocyte infusion with CD19-directed, CAR-modified T cells infused after allogeneic hematopoietic cell transplantation for patients with advanced CD19+ malignancies. Blood 2015;126:862

Park B, Yoo KH, Kim C. Hematopoietic stem cell expansion and generation: The ways to make a breakthrough. Blood Res 2015;50:194 203.

Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov 2013;3:388-98.

Sadelain M, Rivière I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer 2003;3:35-45.

Gong MC, Latouche JB, Krause A, Heston WD, Bander NH, Sadelain M. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1999;1:123-7.

Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 2006;66:10995-1004.

Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008;8:299-308.

Sadelain M, Brentjens R, Rivière I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 2009;21:215-23.

Zhou G, Levitsky H. Towards curative cancer immunotherapy: Overcoming posttherapy tumor escape. Clin Dev Immunol 2012;2012:124187.

Chinnasamy D, Yu Z, Kerkar SP, Zhang L, Morgan RA, Restifo NP, et al. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin Cancer Res 2012;18:1672-83.

Lupo-Stanghellini MT, Provasi E, Bondanza A, Ciceri F, Bordignon C, Bonini C, et al. Clinical impact of suicide gene therapy in allogeneic hematopoietic stem cell transplantation. Hum Gene Ther 2010;21:241 50.

Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 2011;365:1673-83.

Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler- Stevenson M, Feldman SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010;116:4099-102.

Huang X, Wilber A, McIvor RS, Zhou X. DNA transposons for modification of human primary T lymphocytes. Methods Mol Biol 2009;506:115-26.

Ponomarev V, Doubrovin M, Lyddane C, Beresten T, Balatoni J, Bornman W, et al. Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 2001;3:480-8.

Suerth JD, Schambach A, Baum C. Genetic modification of lymphocytes by retrovirus-based vectors. Curr Opin Immunol 2012;24:598-608.

Birkholz K, Hombach A, Krug C, Reuter S, Kershaw M, Kämpgen E, et al. Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Ther 2009;16:596-604.

Urbanska K, Lanitis E, Poussin M, Lynn RC, Gavin BP, Kelderman S, et al. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res 2012;72:1844-52.

Mavilio F, Ferrari G, Rossini S, Nobili N, Bonini C, Casorati G, et al. Peripheral blood lymphocytes as target cells of retroviral vector-mediated gene transfer. Blood 1994;83:1988-97.

Bunnell BA, Muul LM, Donahue RE, Blaese RM, Morgan RA. High-efficiency retroviral-mediated gene transfer into human and nonhuman primate peripheral blood lymphocytes. Proc Natl Acad Sci U S A 1995;92:7739-43.

Ashokkumar DA, Praful DB. Chronic myelogenous leukemia: A review and update of current and future therapy. Int J Pharm Pharm Sci 2016;2016:35-46.

Minakshi G, Jyoti D, Kumar MR, Harish D. Therapies in cancer treatment: An overview. Int J Pharm Pharm Sci 2015;7:1-9.

Yu S, Li A, Liu Q, Li T, Yuan X, Han X, et al. Chimeric antigen receptor T cells: A novel therapy for solid tumors. J Hematol Oncol 2017;10:78.

Maus MV, June CH. Making better chimeric antigen receptors for adoptive T-cell therapy. Clin Cancer Res 2016;22:1875-84.

Chmielewski M, Abken H. CAR T cells transform to trucks: Chimeric antigen receptor-redirected T cells engineered to deliver inducible IL- 12 modulate the tumour stroma to combat cancer. Cancer Immunol Immunother 2012;61:1269-77.

Chmielewski M, Abken H. TRUCKs: The fourth generation of CARs. Expert Opin Biol Ther 2015;15:1145-54.

Sha HH, Wang DD, Yan DL, Hu Y, Yang SJ, Liu SW, et al. Chimaeric antigen receptor T-cell therapy for tumour immunotherapy. Biosci Rep 2017;37:BSR20160332.

Rozman C, Montserrat E. Chronic lymphocytic leukemia. N Engl J Med 1995;333:1052-7.

Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: A randomised, open-label, phase 3 trial. Lancet 2010;376:1164-74.

Rai KR, Peterson BL, Appelbaum FR, Kolitz J, Elias L, Shepherd L, et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. N Engl J Med 2000;343:1750-7.

Ott MG, Zober A. Cause specific mortality and cancer incidence among employees exposed to 2, 3, 7, 8-TCDD after a 1953 reactor accident. Occup Environ Med 1996;53:606-12.

Diehl LF, Karnell LH, Menck HR. The American college of surgeons commission on cancer and the American cancer society. The national cancer data base report on age, gender, treatment, and outcomes of patients with chronic lymphocytic leukemia. Cancer 1999;86:2684-92.

Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M. Viral vectors: A look back and ahead on gene transfer technology. New Microbiol 2013;36:1-22.

Wang Z, Wu Z, Liu Y, Han W. New development in CAR-T cell therapy. J Hematol Oncol 2017;10:53.

Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014;371:1507-17.

Cartellieri M, Bachmann M, Feldmann A, Bippes C, Stamova S, Wehner R, et al. Chimeric antigen receptor-engineered T cells for immunotherapy of cancer. Bio Med Res Int 2010;2010:13.

Barrett DM, Singh N, Porter DL, Grupp SA, June CH. Chimeric antigen receptor therapy for cancer. Annu Rev Med 2014;65:333-47.

Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011;365:725-33.

Kaye J, Gillis S, Mizel SB, Shevach EM, Malek TR, Dinarello CA, et al. Growth of a cloned helper T cell line induced by a monoclonal antibody specific for the antigen receptor: Interleukin 1 is required for the expression of receptors for interleukin 2. J Immunol 1984;133:1339 45.

72.Sha HH, Wang DD, Yan DL, Hu Y, Yang SJ, Liu SW, et al. Chimaeric antigen receptor T-cell therapy for tumour immunotherapy. Biosci Rep 2017;37:BSR20160332.

Quintarelli C, Vera JF, Savoldo B, Giordano Attianese GM, Pule M, Foster AE, et al. Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood 2007;110:2793-802.

Hsu C, Jones SA, Cohen CJ, Zheng Z, Kerstann K, Zhou J, et al. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene. Blood 2007;109:5168-77.

Foster AE, Leen AM, Lee T, Okamura T, Lu A, Vera J, et al. Autologous designer antigen-presenting cells by gene modification of T lymphocyte blasts with IL-7 and IL-12. J Immunother 2007;30:506 16.

Kaka AS, Shaffer DR, Hartmaier R, Leen AM, Lu A, Bear A, et al. Genetic modification of T cells with IL-21 enhances antigen presentation and generation of central memory tumor-specific cytotoxic T-lymphocytes. J Immunother 2009;32:726-36.

Kerkar SP, Muranski P, Kaiser A, Boni A, Sanchez-Perez L, Yu Z, et al. Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res 2010;70:6725 34.

Ho WY, Blattman JN, Dossett ML, Yee C, Greenberg PD. Adoptive immunotherapy: Engineering T cell responses as biologic weapons for tumor mass destruction. Cancer Cell 2003;3:431-7.

Kohn DB, Dotti G, Brentjens R, Savoldo B, Jensen M, Cooper LJ, et al. CARs on track in the clinic. Mol Ther 2011;19:432-8.

Davila ML, Brentjens R, Wang X, Rivière I, Sadelain M. How do CARs work? Early insights from recent clinical studies targeting CD19. Oncoimmunology 2012;1:1577-83.

Hülsmeyer M, Chames P, Hillig RC, Stanfield RL, Held G, Coulie PG, et al. A major histocompatibility complex-peptide-restricted antibody and t cell receptor molecules recognize their target by distinct binding modes: Crystal structure of human leukocyte antigen (HLA)-A1-MAGE-A1 in complex with FAB-HYB3. J Biol Chem 2005;280:2972 80.

Denkberg G, Reiter Y. Recombinant antibodies with T-cell receptor-like specificity: Novel tools to study MHC class I presentation. Autoimmun Rev 2006;5:252-7.

Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 2013;31:71-5.

Hanada K, Restifo NP. Double or nothing on cancer immunotherapy. Nat Biotechnol 2013;31:33-4.

Li YS, Hayakawa K, Hardy RR. The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J Exp Med 1993;178:951-60.

Levine BL, Humeau LM, Boyer J, MacGregor RR, Rebello T, Lu X, et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci U S A 2006;103:17372-7.

Levine BL, Bernstein W, Craighead N, Thompson CB, Lindsten T, St Louis DC, et al. Ex vivo replicative potential of adult human peripheral blood CD4+ T cells. Transplant Proc 1997;29:2028.

Hay KA, Turtle CJ. Chimeric antigen receptor (CAR) T cells: Lessons learned from targeting of CD19 in B-cell malignancies. Drugs 2017;77:237-45.

Published

07-01-2019

How to Cite

Raghunathan, K., and B. Devi P. “CHIMERIC ANTIGEN RECEPTOR FOR CHRONIC LYMPHOCYTIC LEUKEMIA - A REVIEW”. Asian Journal of Pharmaceutical and Clinical Research, vol. 12, no. 1, Jan. 2019, pp. 62-67, doi:10.22159/ajpcr.2019.v12i1.29642.

Issue

Section

Review Article(s)