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ABSTRACT 

Objective: Despite sophisticated treatment regimens, there is no significant improvement in the mortality rates of glioblastoma due to insufficient dosage 
delivery, reoccurrence of tumors, higher systemic toxicity, etc. Since brain endothelial cells and glioblastoma cells express lactoferrin receptors, a target-
specific drug delivery vehicle was developed using lactoferrin itself as a matrix, into which carmustine was loaded. The objective was to use carmustine 
loaded lactoferrin nanoparticles (CLN) to achieve higher therapeutic efficacy and target specificity compared to free carmustine. 

Methods: CLN were prepared using the Sol-oil method. The nanoparticles prepared were characterized for their size, shape, polydispersity, and 
stability using FESEM and DLS methods. Drug loading and drug releasing efficiencies were also estimated. Further, cellular uptake of nanoparticles 
and their antiproliferative efficacy against glioblastoma cells were evaluated. 

Results: Characterization of CLN showed that they were spherical with ≤ 41 nm diameter and exhibited homogeneously dispersed stable 
distribution. Loading efficiency of carmustine in CLN was estimated to be 43±3.7 %. Drug release from the nanoparticles was pH dependent with the 
maximum observed at pH 5. At physiological and gastric pH, drug release was lower, whereas maximum release was observed at endocytotic 
vesicular and around tumor extracellular pH. Confocal microscopic studies showed an active cellular uptake of nanoparticles. Results of 
antiproliferative analysis substantiated a higher antiproliferative effect for CLN compared to free carmustine.  

Conclusion: The results of the study demonstrated that CLN serves as a vital tool, in designing an effective treatment strategy for targeted drug 
delivery to glioblastoma. 
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INTRODUCTION 

Brain and other central nervous system tumors (BCNST), are known to 
be one of the leading causes of cancerous deaths. According to the 
central brain tumor registry of the United States (CBTRUS), in the US 
alone, every year on an average 15 000 deaths occur due to BCNST, and 
approximately 80 000 new cases are diagnosing yearly [1]. No known 
environmental risk factors other than ionizing radiation had identified 
for such higher incidence rates [2-4]. Amongst all the BCNST, 
glioblastoma is the most common and most aggressive malignant tumor 
with 5 y post-diagnosis survival rates of less than 6 % [1]. World health 
organization (WHO) grade IV classified, glioblastoma arises from 
malignantly transformed glial cells, and it diffusely invades other regions 
of the brain, making it highly lethal [5-7]. Its higher reoccurrence even 
after surgical resection adds to the complexity [8]. 

Current preferred treatment for glioblastoma is surgical resection of 
tumors, followed by radiotherapy with concurrent chemotherapy [9-
13]. Despite these advanced treatments, there is no significant 
improvement reported in the overall survival rates of patients [8]. 
These failures are mainly due to (a) reoccurrence of tumors that 
arise from surgically inaccessible infiltrating malignant cells [8]; (b) 
emergence of resistance to radiotherapy and chemotherapy due to 
suboptimal dosage exposure for prolonged periods as a result of 
inefficient dosage delivery [14-17]; (c) higher systemic toxicity as a 
consequence of nonspecific localization of drugs [18-20]. These 
failures emphasize the need for the development of efficient drug 
delivery vehicles with significant drug localization in glioma cells. 

In recent years, numerous efforts have been made to develop different 
drug delivery vehicles to overcome the above problems. Some of these 
are namely liposomes, nanoshells, dendrimers, solid lipid nanoparticles, 
polymeric micelles, carbon nanotubes, polyglycolic acid (PGA) 
nanoparticles, polylactic acid (PLA) nanoparticles, poly(D,L-lactic-co-
glycolides) acid (PLGA) nanoparticles, polyanhydride nanoparticles, 
polyorthoesters nanoparticles, polycyanoacrylate nanoparticles, 
polycaprolactone nanoparticles, chitosan nanoparticles, albumin 

nanoparticles, etc. [21, 22]. But, many of these drug delivery vehicles lack 
target specificity, making their scope limited. Further, the poor ability of 
these vehicles in the transport of drugs across the blood-brain barrier 
significantly limits their application for delivery of drugs to the brain. 
Many strategies have developed to overcome the above limitations [22, 
23]. Among them, exploiting one of the brain’s natural transport systems, 
the receptor-mediated endocytosis, is gaining much interest in 
delivering therapeutic drugs to the brain. Ligands commonly used for 
this purpose are folate, transferrin, lactoferrin, etc. These ligands are 
either coated or conjugated to the nanoparticles, to facilitate 
nanoparticles entry into the brain via receptor-mediated endocytosis 
[23, 24]. 

Lactoferrin is an 80 kDa protein, which is mainly found in milk and 
other secretory body fluids. It has numerous clinically significant 
physiological functions viz., anti-inflammation, host defense against 
infections, maintenance of iron homeostasis, etc. [25-28]. Since brain 
endothelial cells, and glioblastoma cells [29-33] express lactoferrin 
receptors and also its low endogenous levels in serum [34, 35], make 
lactoferrin more advantageous in using it for targeting to the brain 
as it avoids competition with endogenous ligands and also increases 
target specificity. Drug-loaded nanoparticles were reported to 
possess a significant advantage over drug conjugated nanoparticles 
regarding efficacy and drug release in the targeted cells [36]. 

In the context of these facts, biodegradable protein nanoparticles 
were developed using lactoferrin itself as a matrix, into which 
chemotherapeutic drug, carmustine was loaded, and these 
nanoparticles were used for targeting brain tumors in vitro. The 
objective was to exploit lactoferrin nanoparticles for a dual purpose, 
as a drug carrier, as well as a targeting ligand. Cell culture models 
were used to evaluate the efficiency of carmustine loaded lactoferrin 
nanoparticles in drug localization and cytotoxicity. 

We hypothesize that carmustine loaded lactoferrin nanoparticles 
will be an effective treatment strategy for targeting brain tumors if it 
increases target specificity, enhance therapeutic efficacy, 
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bioavailability, and stability, and also minimizes the systemic 
toxicity of the drug. This paper discusses the preparation of 
carmustine loaded lactoferrin nanoparticles, their optimal 
characteristic features which make them better drug delivery 
vehicles and further about their efficacy in treating brain tumors in 
general and more particularly glioblastoma in vitro. 

MATERIALS AND METHODS 

Materials 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT), 4′,6-diamidino-2-phenylindole (DAPI), rhodamine 123 were 
procured from Sigma–Aldrich (St. Louis, USA), lactoferrin was 
obtained from Naturade LLC (Irvine, USA), and olive oil from Nicola 
pantaleo (Fasano, Italy). Carmustine was of pharmaceutical grade 
(Emcure pharmaceuticals, Pune, India). Minimum essential media, 
non-essential amino acids, sodium pyruvate, Dulbecco's modified 
eagle medium, fetal bovine serum were bought from Thermo fisher 
scientific (Waltham, USA). C6

Preparation of carmustine loaded lactoferrin, blank lactoferrin 
and rhodamine loaded lactoferrin nanoparticles 

 glioma, SK-N-SH cell lines were 
acquired from National centre for cell science (Pune, India). Rest of 
the materials were of either analytical or molecular biological grade.  

Nanoparticles were prepared as described by Krishna AD et al. (2009) 
[36]. Briefly, 1 ml of cold phosphate-buffered saline (PBS) pH-7.4 
containing 50 mg of dissolved lactoferrin was gently mixed with 20 mg 
of carmustine dissolved in dimethyl sulfoxide (DMSO). The mixture was 
incubated at 4 °C for 30 min. After incubation, the mixture was slowly 
added to 30 ml of cold olive oil and was gently dispersed by vortexing, 
followed by sonication using ultrasonic homogenizer at 4 °C. 
Immediately the resulting mixture was snap frozen by keeping it in the 
liquid nitrogen for 10 min. After thawing the mixture at 4 °C, it was 
centrifuged at 8000 g for 15 min at 4 °C. The supernatant was discarded, 
and the pellet was washed thrice with diethyl ether. Following air drying, 
the pellet was dispersed in cold PBS (pH-7.4) by sonication and was 
stored at 4 °C until use. For fluorescent studies, rhodamine loaded 
lactoferrin nanoparticles were prepared similarly, but instead of 
carmustine, rhodamine was used. Similarly, blank lactoferrin 
nanoparticles were also prepared, but without the use of drug or dye. 

Characterization of nanoparticles by field emission scanning 
electron microscope (FE-SEM) 

Size and morphology of lactoferrin nanoparticles were characterized 
by FE-SEM (Field electron and ion, Hillsboro, USA). Freshly prepared 
lactoferrin nanoparticles were coated on a clean glass slide and were 
dried overnight in a dust-free chamber. Samples were then coated 
with gold and were viewed under the electron microscope. For 
image capturing and data analysis, the manufacturer’s standard 
operative procedures were followed.  

Characterization of nanoparticles by dynamic light scattering (DLS) 

Zeta potential, hydrodynamic diameter, and polydispersity index 
(PDI) of lactoferrin nanoparticles in suspension form were analyzed 
by dynamic light scattering method using SZ-100 Nanopartica 
analyzer system equipped with a diode-pumped solid-state laser 
having a wavelength of 532 nm (Horiba scientific, Irvine, USA). 
Particle analysis and data acquisition were carried out according to 
the manufacturer’s instructions. 

Evaluation of loading efficiency 

Carmustine loaded lactoferrin nanoparticles were suspended in 1 ml 
of PBS of pH-5 and were kept under gentle rocking at 4 °C for 30 min 
for the release of the drug from the nanoparticles (n = 3). 30 % silver 
nitrate was added to precipitate the protein out of the solution. The 
resulting solution was centrifuged at 15 000 g for 15 min at 4 °C. The 
obtained supernatant was filtered and used for the drug estimation 
by high-performance liquid chromatography (HPLC) (Waters, 
Milford, USA) [37]. The supernatant was analyzed in triplicate. 
Different concentrations of carmustine solutions were also prepared 
and estimated by HPLC to develop a standard curve. Amount of 
carmustine loaded in the lactoferrin nanoparticles was determined 
using the developed standard curve.  

Drug loading efficiency was calculated using the following formula. 

Loading efficiency % = (DLoaded DTotal⁄ ) × 100 

DLoaded  =  DTotal − DLost 

where DLoaded = amount of loaded drug; DTotal  = amount of total drug 
used; DLost 

In vitro pH-dependent drug release assay 

= amount of drug lost during preparation.  

pH-dependent drug release assay was performed by quantifying drug 
released under different pH conditions [38]. Pelleted nanoparticles 
equivalent to 200 μg of carmustine were suspended in PBS solutions of 
varying pH ranges (1-9) and were incubated for 4 h at 4 °C on a rocker 
with moderate speed. After incubation, 30 % silver nitrate was added to 
the PBS solutions to precipitate protein. The mobile phase was also 
added to extract the drug, followed by centrifugation at 15000 g for 15 
min at 4 °C. The obtained supernatant was filtered using a 0.2-micron 
filter, and the amount of drug present in the supernatant was estimated 
using HPLC at 230 nm wavelength for carmustine. For quantification of 
unknown amounts of the drug in the samples, a standard curve was 
developed using known concentrations of the drug in the same 
incubation media and quantified by HPLC. Each sample was quantified in 
triplicate (n = 3). 

Cellular uptake assay by confocal microscopy 

SK-N-SH cells (seeding density of 2 × 10⁵ cells) were grown on glass 
coverslips in 12 well plates. Equivalent amounts of rhodamine 
loaded lactoferrin nanoparticles were added to the wells and were 
incubated for different time points (0.5 h, 1 h, 2 h, 4 h, and 8 h). 
Untreated cells were kept as control. After specified time points, 
cells were washed thrice with PBS buffer (pH-7.4) and were fixed 
with 4 % paraformaldehyde for 10 min. After subsequent washings 
with PBS buffer, cells were counterstained with DAPI, and the 
coverslips were mounted on a glass slide. Cells were viewed under 
the confocal microscope (Leica, Buffalo grove, USA) for analyzing the 
amount of uptake of nanoparticles, by utilizing the intrinsic 
fluorescence of rhodamine 123 (excitation and emission maxima are 
511 nm and 534 nm respectively) [39]. 

Evaluation of the antiproliferative activity of carmustine loaded 
lactoferrin nanoparticles 

The antiproliferative assay was performed using the MTT method 
[40]. Briefly, 50 000 C6 glioma cells were seeded in every well of the 
96 well plate and were incubated in the carbon dioxide incubator at 37 
°C for 12 h. After incubation, media was replaced with fresh media 
containing increasing concentrations of either soluble carmustine or 
its equivalent carmustine loaded nanoparticles. Similar treatment was 
given with blank lactoferrin nanoparticles. Control cells were also 
kept, without the addition of neither soluble drug nor the 
nanoparticles. Cells were incubated in the 37 °C carbon dioxide 
incubator for 24 h. After incubation, media was discarded, and cells 
were washed twice. Fresh media containing 10 %, 5 mg/ml MTT, was 
added to the cells followed by incubation for 8 h in a carbon dioxide 
incubator at 37 °C. During incubation, cells that survived after the 
treatment convert yellow tetrazolium salt into insoluble formazan 
crystals. MTT containing media was discarded, and insoluble formazan 
crystals were dissolved by the addition of DMSO. The intensity of the 
developed color was measured using multiplate reader-Infinite 200 
(Tecan, Mannedorf, Switzerland) at 595 nm. Percentage of inhibition 
(PI) was calculated according to the following formula.  

PI =  {(ODControl − ODTreated) ODControl⁄ } × 100 

where, PI = percentage of inhibition; ODControl = absorbance at 595 nm for 
control cells; ODTreated

After plotting the graph, half maximal inhibitory concentration (IC

 = absorbance at 595 nm for treated cells.  

50 

Statistics 

value) was calculated from it. 

All the experiments were performed a minimum of three times 
individually. Data were presented as mean±standard deviation. 
Amounts of drug released at various pH conditions were statistically 
analyzed by one-way ANOVA using the Student-Newman-Keuls 
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method. Antiproliferative activities of free carmustine and carmustine 
loaded lactoferrin nanoparticles were statistically compared by 
Student t-test. P<0.05 was regarded as statistically significant. 

RESULTS  

Characterization of nanoparticles by FESEM 

Blank lactoferrin nanoparticles and carmustine loaded lactoferrin 
nanoparticles were prepared as described in materials and methods. 
The prepared nanoparticles were characterized by FESEM to obtain 

information relating to their size and morphology. The FESEM 
analysis revealed that their sizes were in the range of 13-22 nm, 
with an average size of 17.5±3.06 nm (mean±SD) for blank 
lactoferrin nanoparticles (fig. 1a) and in the range of 32-41 nm, with 
an average size of 36.5±3.90 nm (mean±SD) for carmustine loaded 
lactoferrin nanoparticles (fig. 1b). It is apparent that lactoferrin 
nanoparticles become more than double in their average size after 
loading of the drug. Further, FESEM analysis revealed that the 
nanoparticles were homogenous in their sizes and were spherical in 
their shapes. 

 

   

(A)       (B) 

Fig. 1: FESEM analysis of (A) blank lactoferrin nanoparticles, (B) carmustine loaded lactoferrin nanoparticles. Above image was 
representative of a quadruplicate experiment (n = 4) 

 

Characterization of nanoparticles by DLS 

Zeta potential values of blank lactoferrin nanoparticles and 
carmustine loaded lactoferrin nanoparticles were -14.9±3.87 mV 
(mean±SD) (fig. 2a) and -24.6±5.94 mV (mean±SD) (fig. 2b) 
respectively. These zeta potential values indicate that carmustine 
loaded lactoferrin nanoparticles were under colloidal stability in 
nature, and blank lactoferrin nanoparticles were under moderately 

colloidal stability in nature. Hydrodynamic sizes of nanoparticles 
were also investigated using DLS analysis (fig. 2c and fig. 2d). Since 
DLS measures the hydrodynamic diameter of the particles, whereas 
FESEM measures size in the dry state, nanoparticles sizes were little 
larger in DLS compared to FESEM analysis. PDI for blank lactoferrin 
nanoparticles was 0.264±0.03 and for carmustine loaded lactoferrin 
nanoparticles was 0.338±0.05. These PDI values confirm that these 
nanoparticles had a homogeneously dispersed size distribution. 

 

 

Fig. 2: DLS analysis: Zeta potential measurements of (A) blank lactoferrin nanoparticles, (B) carmustine loaded lactoferrin nanoparticles. 
Hydrodynamic diameter measurements of (C) blank lactoferrin nanoparticles, (D) carmustine loaded lactoferrin nanoparticles. The 

experiment was conducted in triplicates (n = 3) 
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Estimation of drug loading efficiency of carmustine loaded 
lactoferrin nanoparticles 

Significantly higher drug loading efficiency was achieved in the 
nanoparticles by using the Sol-oil method. Carmustine solutions 
of different concentrations were prepared and estimated by 
HPLC, and the standard graph was developed for calculating the 
amount of encapsulated carmustine present in the lactoferrin 

nanoparticles (fig. 3b). Carmustine loaded lactoferrin 
nanoformulations were treated as described in the materials and 
methods, the released drug was estimated by HPLC (fig. 3a) and 
correlated with the standard graph. Then the loading 
efficiencies were calculated using the formula mentioned in the 
materials and methods. Loading efficiency of carmustine in the 
carmustine loaded lactoferrin nanoparticles was found to be 
43±3.7 % (n = 3). 

 

 

Fig. 3: (A) HPLC analysis of carmustine at 230 nm wavelength. (B) Quantification of carmustine by HPLC; data were represented as 
mean±SD (n = 3) 

 

In vitro pH-dependent drug release assay  

pH-dependent release assay of carmustine loaded lactoferrin 
nanoparticles were carried out at various pH ranges (1–9) (fig. 4). The 
maximum amount of drug was released at pH 5, which was followed by 

pH 6. At all other pH conditions, the release was comparatively low. At 
physiological pH (pH 7.2 to 7.4) and gastric pH (pH 1 to 2.5), drug release 
was less than 20 % and whereas maximum release was observed at 
endocytotic vesicular pH (pH 5) and around tumor extracellular pH (pH 
5.85-7.35) [41], from the nanoparticles. 

 

 

Fig. 4: pH-dependent release assay of carmustine loaded lactoferrin nanoparticles. Car-lacto represents carmustine loaded lactoferrin 
nanoparticle. Averages and standard deviations from three experiments (n = 3) were shown as mean±SD. **P<0.01 by one-way ANOVA 

using Student-Newman-Keuls method 

 

Cellular uptake assay by confocal microscopy 

Rhodamine 123 loaded lactoferrin nanoparticles were incubated 
with the cells for different time points to confirm the cellular uptake 
of nanoparticles. Up to 1 h of incubation, rhodamine was not visible, 

but after 2 h, it was noticed that its level had increased with the 
increment of time. By the end of 8 h, cells were localized entirely 
with rhodamine 123. Cells, which were not exposed to rhodamine 
123 loaded nanoparticles, were taken as the control (fig. 5). Time 
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course experiment showed that there was a gradual increase of 
rhodamine in the cells with the time, which confirmed the cellular 
uptake of nanoparticles and their rise was gradual and proportional 
to the time. This result also confirmed the longer retention of 

lactoferrin nanoparticles within the cells, which provides a longer 
time for chemotherapeutic drugs to confer the antiproliferative 
effect.

 

 

Fig. 5: Cellular uptake of rhodamine 123 loaded lactoferrin nanoparticles. Time course experiment showed the uptake of nanoparticles 
into the cells, and there was a gradual increase in the uptake of nanoparticles with the increment of time. A, B, C, D, E, F represent control, 
0.5 h, 1h, 2h, 4h, and 8h time points respectively. In each big square, the upper left square represents the rhodamine 123 (red), the upper 
right square represents transmission image, the lower left square represents DAPI (blue), and the lower right square represents merger 

image. Total number of independent experimentation, n = 3 
 

Evaluation of the antiproliferative activity of carmustine loaded 
lactoferrin nanoparticles  

Antiproliferative activity of carmustine loaded lactoferrin 
nanoparticles were compared with the antiproliferative activity of the 
free drug (carmustine) after 24 h of treatment with free drug and 
drug-loaded nanoparticles. The results clearly showed that carmustine 
loaded lactoferrin nanoparticles had a higher antiproliferative effect 

compared to free carmustine at all the experimental concentrations 
(fig. 6a). And there was a reduction of 3.29 times in the IC50 value with 
the treatment of carmustine loaded lactoferrin nanoparticles 
compared to free carmustine treatment. IC50 

 

values of free carmustine 
and carmustine loaded lactoferrin nanoparticles were 43.22 μg/ml 
and 12.76 μg/ml respectively. Blank lactoferrin nanoparticles 
(delivery vehicle) didn’t show any significant antiproliferative activity 
at all the experimental concentrations (fig. 6b). 

  

(A)       (B) 

Fig. 6: Dose-dependent antiproliferative activities of (A) free carmustine and carmustine loaded lactoferrin nanoparticles and (B) free 
lactoferrin nanoparticles after 24 h of treatment. Car, car-lacto, and lacto-nano represent the treatment of carmustine drug, carmustine 
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loaded lactoferrin nanoparticles and blank lactoferrin nanoparticles respectively. Data were represented as mean±SD (n = 3), **P<0.01 
by student t-test 

DISCUSSION 

Current advanced treatments for glioblastoma remain not so effective 
since there is no significant improvement in the survival of the patients. 
The purpose of this study was to develop an effective target-specific drug 
delivery vehicle with reduced systemic toxicity and increased 
therapeutic efficacy against glioblastoma. As it is known, lactoferrin 
receptors are expressed on brain endothelial cells, and glioblastoma 
cells, a target-specific drug delivery vehicle was developed, using 
lactoferrin itself as a matrix, into which chemotherapeutic drug, 
carmustine was loaded. In the present study, carmustine loaded 
lactoferrin nanoparticles were prepared and characterized their features 
such as size, shape, polydispersity, stability, drug loading efficiency, drug 
releasing efficiency, cellular uptake ability, etc., and further evaluated 
their efficacy in treating glioblastoma. 

For decades, carmustine was a drug of choice for treating glioblastoma 
[42-44]. Due to its dose-limiting side effects such as bone marrow 
suppression [45] and non-dose dependent pulmonary fibrosis [46], its 
usage was limited. To reduce systemic toxicity, intracranial polymer 
implants (gliadel wafers) impregnated with carmustine, have been using 
clinically since 1996 [19]. But these gliadel wafers were found to be not 
successful as they do not show effective therapeutic efficacy due to many 
limitations such as lower penetration, inability in preventing short 
distant tumor recurrence, lack of synergetic action in combination with 
radiotherapy and other chemotherapeutic drugs, practical difficulties in 
prescribing regular dosage schedules as it requires regular intracranial 
surgeries [47, 19]. Further, complications are reported in the use of 
gliadel wafers due to severe adverse effects such as healing 
abnormalities [48], craniotomy infections [49], seizures [11], oedema 
[11, 50], neurological decline [50], intracranial hypertension [10], 
cerebrospinal fluid leaks [10], tumor bed cyst formation [51], pericavity 
necrosis [52] etc. These limitations and adverse effects emphasize the 
need for a better drug delivery vehicle for efficient treatment of 
glioblastoma. 

In the present study, carmustine loaded lactoferrin nanoparticles 
were prepared using the Sol-oil method. This method is simple, less 
time consuming and doesn’t involve any chemical modifications 
either to the drug or protein unlike other methods such as protein 
coacervation method [53]. Further, lactoferrin conformation 
remains in the native state. As the nanoparticles are prepared using 
lactoferrin, a natural protein present abundantly in milk and other 
secretory body fluids, these nanoparticles are safer to use even at 
high dosages. Besides, significantly higher drug loading efficiency 
was also achieved in the nanoparticles by using this method. Drug 
loading was indeed higher compared to commercially available 
carmustine implants, which have only 3.85 % drug loading capacity 
[11]. The reported maximum drug loading capacity that can be 
achieved in the biodegradable polymers was 28 % [54], which was 
less than that observed in carmustine loaded lactoferrin 
nanoparticles (43±3.7 %). Drug loading efficiency of a drug delivery 
vehicle can influence its therapeutic index. Higher the achieved drug 
loading efficiency, higher will be the therapeutic index. With the 
increased therapeutic index there will be an enhanced antitumor 
effect and reduced toxicity [55]. 

Using Sol-oil method, nanoparticles of sizes ≤ 41 nm were 
successfully developed, which was confirmed by FESEM analysis. 
FESEM studies also showed that blank lactoferrin nanoparticles of 
13-22 nm size became enlarged to 32-41 nm size after successful 
loading of carmustine drug. It is an advantage to have smaller sized 
nanoparticles because several studies had consistently shown that 
smaller sized nanoparticles were capable of escaping from the 
reticuloendothelial system, thereby evaded rapid clearance from 
systemic circulation and had longer circulation time and stability in 
the blood [56-59]. Several other studies also had shown, an inverse 
correlation between nanoparticle size’s and blood-brain barrier 
penetration [60-62]. It indicates that particles, which are smaller in 
size can cross the blood-brain barrier more efficiently than particles 
which are larger. Thus, the smaller size of these nanoparticles can 
increase their circulatory half-life and also make them more efficient 
in crossing the blood-brain barrier. 

The measured zeta potential values indicate that these nanoparticles 
were stable. Carmustine loaded lactoferrin nanoparticles were 
under colloidal stability range, whereas blank lactoferrin 
nanoparticles were under moderately colloidal stability range. 
Measured nanoparticle sizes were found to be little larger in DLS 
compared to FESEM analysis. Since, DLS measures the 
hydrodynamic diameter of the particle, which includes not only the 
particle but also the ionic and solvent layers associated with the 
particle in the solution, the particle sizes will be larger in DLS 
compared to FESEM, which measures size in the dry state [63, 64]. 
Polydispersity index values of 0.264±0.03 and 0.338±0.05 for blank 
lactoferrin nanoparticles and carmustine loaded lactoferrin 
nanoparticles respectively indicate that these nanoparticles possess 
a homogenous population with narrow size distribution.  

The release of the drug from the nanoparticles was found to be pH 
dependent. It was observed that at physiological and gastric pH, 
drug release from the nanoparticles was very minimum, whereas 
maximum drug release was observed at the endocytotic vesicular pH 
(pH 5) and around tumor extracellular pH (pH 5.85-7.35) [41], 
which indicates that these nanoparticles can have low loss of the 
drug during systemic circulation, thereby exhibit reduced systemic 
toxicity. And they also show more specificity in the drug release, 
mainly in the endocytotic vesicles, which are involved in receptor-
mediated endocytosis and around tumor environment, which have 
reduced pH as a consequence of higher anaerobic respiration of 
cancerous cells [65, 66]. pH-dependent drug release is an added 
advantage, which makes these nanoparticles optimal drug delivery 
vehicles with reduced systemic toxicity and increased tumor 
specificity. 

As carmustine drug was nonfluorescent, cellular uptake of 
nanoparticles was tested by loading fluorescent dye, rhodamine 123 
into the lactoferrin nanoparticles. Time course study using confocal 
microscopy had shown that there was a gradual increase of 
rhodamine in the cells with the increment of time, which confirmed 
the active cellular uptake of lactoferrin nanoparticles. Earlier it was 
reported that the mechanism of uptake of lactoferrin nanoparticles 
into the cells was through receptor-mediated endocytosis [36, 39]. 
As the brain endothelial cells and glioblastoma cells express 
lactoferrin receptors [29-33], a similar mechanism could be 
operative, during the transport of carmustine loaded lactoferrin 
nanoparticles across the blood-brain barrier and also at the entry 
into the tumor cells.  

Comparative study of the antiproliferative effect of free carmustine and 
carmustine loaded lactoferrin nanoparticles, had validated that 
carmustine loaded lactoferrin nanoparticles had a higher therapeutic 
efficacy than free carmustine. Previously, carmustine encapsulated 
liposomes, and carmustine-magnetic nanoparticles showed 50 % 
inhibition at around 467 μM and 100 μM concentrations of carmustine 
respectively [67, 68], whereas carmustine loaded lactoferrin 
nanoparticles showed 50 % inhibition at 59.6 μM of carmustine, which 
was significantly lower and further substantiates the higher therapeutic 
efficacy of carmustine loaded lactoferrin nanoparticles. These results 
were also consistent with the earlier reports [39, 38], where lactoferrin 
nanoparticles had used as drug delivery vehicles. Higher uptake of 
nanoparticles, sustained drug release from the nanoparticles and the 
longer retention of the drug inside the cells might have contributed to 
the increased therapeutic efficacy of carmustine loaded lactoferrin 
nanoparticles against C6 glioma cells compared to the free carmustine. 

Current state of the art, drug delivery vehicles for the treatment of 
glioblastoma includes solid lipid nanoparticles, nanostructured lipid 
carriers, liposomes, polymeric nanoparticles, micelles, magnetic 
nanoparticles, gold nanoshells, carbon nanotubes, etc. These drug 
delivery vehicles are failing to be an effective therapeutics due to 
one or more of the crucial issues viz., lower encapsulation efficiency, 
higher toxicity, lower stability, rapid clearance from the blood, lower 
biodegradability, lack of specificity, lower therapeutic indices, higher 
manufacturing costs, etc. [69-71, 21]. But, as may be seen from the 
results of the present study, carmustine loaded lactoferrin 
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nanoparticles are showing promising results, which may overcome 
these challenges. 

Thus, carmustine loaded lactoferrin nanoparticles serve as potential 
drug delivery vehicles in treating glioblastoma effectively in vitro. 
Further studies are required to establish in vivo efficacy. 

CONCLUSION 

Carmustine loaded lactoferrin nanoparticles, with ≤ 41 nm size were 
successfully developed, using lactoferrin as a single matrix. These 
nanoparticles were spherical with homogeneous distribution, 
enhanced stability, and higher drug loading efficiency. The release of 
the drug from nanoparticles was pH dependent, which adds 
additional advantage to this target specific drug delivery vehicle. 
Further, active cellular uptake of nanoparticles with a significant 
antiproliferative effect in cell culture models substantiated 
carmustine loaded nanoparticles as an effective drug delivery 
vehicle in treating glioblastoma. 

Further in vivo efficacy and toxicological studies using carmustine 
loaded lactoferrin nanoparticles would provide an opportunity for 
the development of an effective treatment strategy against 
glioblastoma without any systemic toxicity.  
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