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ABSTRACT

Objective: This study aimed to find the herbal compounds from the database of Indonesian herbs with potential for use as histone deacetylase 2 (HDAC2) 
enzyme inhibitors through virtual screening using the LigandScout program.

Methods: Virtual screening was conducted using LigandScout 4.09.3, AutodockZN, and AutoDockTools.

Results: The virtual screening process resulted in 10 compounds with the highest pharmacophore fit score rating, from which five compounds with 
the best criteria for molecular dynamics simulations were selected: Boesenbergin B, pongachalcone I, 6,8-diprenylgenistein, marmin, and mangostin. 
The ΔG values obtained were, respectively, −8.28, −9.15, −7.05, −9.07, and −7.15. The active crystal ligand N-(2-aminophenyl) benzamide was used as 
a positive control, with ΔG value of −10.27. Molecular dynamic’s simulations showed that the activity of HDAC2 inhibitors was known to interact in 
the amino acid residues His145C, Tyr308C, Zn379C, Leu276C, Phe155C, Phe210C, Leu144C, and Met35C.

Conclusions: Based on virtual screening and the molecular dynamics simulations, marmin was considered to provide the best overall activity of 
analysis. Simulation analysis of molecular dynamics from hits compound showed that analysis with MMGBSA gave higher free energy binding value 
than MMPBSA.
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INTRODUCTION

Histone deacetylase (HDAC) enzymes may be useful molecular targets 
for treating obesity in terms of metabolic modification. Studies have 
shown that gene regulation by HDAC can be an approach to treating 
type 2 diabetes and as a modification of glucose and fatty acids 
metabolism [1]. HDACs comprise a family of 18 enzymes that control 
the N-ε-lysine deacetylation of histone to reestablish the positive charge 
in the N-terminus of the histone tails [2]. In mammals, Class 1 HDAC 
(HDAC1, HDAC2, HDAC3, HDAC8, and HDAC10) has strong activity as 
a catalyst and is generally a target of HDAC2 inhibitors [3].Therefore, 
given the high potential of HDAC enzymes, especially HDAC Class 1, 
for use in diabetes treatment, further research is needed to examine 
various therapies to treat this disease.

Diabetes mellitus is a metabolic disorder caused by insufficient insulin 
production or the inability of the body to effectively use the insulin 
produced, resulting in an increase of glucose concentration in the blood 
(called hyperglycemia) [4]. This is due to the fact that insulin performs 
as a hormone that regulates blood sugar balance and does not work 
properly [5]. The prevalence of diabetes globally by 2015 is estimated 
to reach 416 million patients and is estimated to increase to 642 million 
patients by 2040 [6]. A significant change in the etiology of diabetes 
is contributed by environmental influences or epigenetic factors [3]. 
An epigenetic modification occurs due to inconsistent environmental 
conditions and lifestyle. At present, researchers have observed changes in 
epigenetic markers in diabetes models that are related to changes in gene 
expression due to environmental stimulation [6]. Based on the potential 
ability of HDAC enzymes to treat diabetes by inhibiting enzyme activity 
in gene overexpression, as catalysts, and for metabolism modification 
through interaction between enzymes and potential compounds, further 
research is needed to develop new drug therapies that are more effective 
for the treatment of diabetes. Research development of new drug 
therapies requires a long time and high cost if performed in vitro; hence, 

more work is needed to support bioinformatics-based systems that can 
facilitate data processing with computers.

Here, we conducted a bioinformatics-based analysis to examine 
molecular interactions through the simulation of molecular dynamics 
in search of antidiabetic potential of herbal plant database compounds 
found in Indonesia. We aimed to find the herbal compounds from the 
database of Indonesian herbs with potential for use as HDAC2 enzyme 
inhibitors through virtual screening using the LigandScout program. 
Virtual screening is another method that allows researchers to 
identify possible lead compounds for drug development or select some 
compounds in silico [7]. Virtual screening of the Indonesian medicinal 
herb database was performed using the website www.herbaldb.
farmasi.ui.ac.id, to download compounds that could potentially work 
as inhibitors of HDAC2 enzymes, namely those are classified as Class 
I HDAC, which have strong activity as catalysts. The virtual screening 
compounds were then simulated molecularly to determine the 
interaction of tethered compounds or ligands with HDAC2 enzymes.

METHODS

We performed a virtual screening of the Indonesian herbal database 
using LigandScout 4.09.3 software from a pharmacophore model based 
on the HDAC2 structure. The resultant compounds were redocked 
using AutodockZN and AutoDockTools to find out values for the free 
binding energy and inhibition constant so that the best compound 
could be selected for molecular dynamics simulations. The material 
used was the three-dimensional (3D) structure of HDAC 2, downloaded 
from the Research Collaboratory for Structural Bioinformatics Protein 
Data Bank (PDB) website (http://www.rscb.org/pdb) with the PDB ID 
of 3MAX. The database used was the two-dimensional structures of 
candidate compounds in the form of.mol or.mol2 files obtained from the 
Indonesian Herbal Database (www.herbaldb.farmasi.ui.ac.id). Decoy 
structure was obtained from the directory of useful decoys-enhanced 
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website (http://www.dude.docking.org). These structures were used 
for validation using receiver operating characteristic curve analysis.

First, the HDAC2-based structure pharmacophore model was 
made. The PDB HDAC2 and PDB ID 3MAX were downloaded using 
LigandScout. Then, the active ligand of HDAC2 was located which 
was N-(2-aminophenyl)benzamide. Ligand crystal (LLX) acted as 
a positive control. The 3D structures of compounds obtained from 
the virtual screening were then downloaded for use in the molecular 
docking process to acquire the free bond energy data and its inhibition 
constants using AutoDockTools and Autodock4Zn. Based on their free 
binding energy, compounds were then selected which were considered 
to provide the best molecular dynamics simulation.

RESULTS AND DISCUSSION

From the pharmacophore-based virtual screening, 18 compound 
hits were gained according to the pharmacophore fit score from 
LigandScout. Then, the 10 highest scoring compounds were selected to 
proceed with the molecular docking process, or redocking, to determine 
the interaction of free binding energy of the compounds to the HDAC2 
macromolecule (Table 1).

Five of 10 compounds were considered to produce the best 
molecular dynamics simulations: Boesenbergin B, pongachalcone I, 
6,8-diprenylgenistein, marmin, and mangostin. Of the five compounds, 
molecular dynamics analysis was performed using the Amber program, with 
N-(2-aminophenyl) benzamide (LLX) ligand crystals as positive control.

Analysis of molecular dynamics: Root mean square deviation 
(RMSD) analysis
RMSD is a measurement to compare changes or shifts in molecular 
conformation. In a simulation lasting for 20 ns, each system experienced 
an increase in RMSD backbone as shown in Fig. 1, which indicates that 
the structure of the macromolecule enzymes started to open (unfold).

Fluctuations in RMSD values could also be caused by different ligand 
structure forms. Ligands with large structures and large amounts of 
torque require more effort to achieve a stable conformation, which is 
shown with a stable graph as in the positive control charts of LLX ligand 
crystal and marmin compounds. During a simulation run, an increase in 
RMSD value indicates that the enzyme macromolecule structure began 
to unfold and the ligand would look for the corresponding binding site or 
appropriate coordinate of the protein. Thus, given the longer simulation 
time, the ability to do a more in-depth analysis of the bond stability 
between ligand and macromolecules was possible because achieving a 
stable conformation on each ligand required different durations.

Analysis of molecular dynamics: Root mean square fluctuation 
(RMSF) analysis
RMSF is a measure of the deviation between the particle position and 
some reference position. RMSF is calculated against each residue during 
the simulation. The RMSF scores outline the shifting conformations of 
each amino acid residue that gives proteins flexibility.

In the RMSF graph (Fig. 2), the back bond atom against the 
macromolecule HDAC2 had high fluctuations and flexibility in the 
residual numbers 19–28, 190–226, 262–271, and 343–361, indicating 
that the residue did not provide good bonding energy to the ligands of 
macromolecule compounds or that it did not bind at all. The instability 
of the interaction makes the affinity bond more unstable resulting in 
the value of free energy being greater.

Analysis using MMPBSA
MMPBSA is a program that can be used to calculate the free energy of a 
chemical bond in a molecular dynamics simulation using the Poisson–
Boltzmann equation [8].

MMGBSA and MMPBSA analyses were performed on the last 50 frames 
of 2000 simulated molecular dynamics frames. The selection of the Residual number

Table 1: Values of candidate compound’s free binding energy and inhibition constants based on the Indonesian herbal database

No. Compound names Autodock4Zn Autodock4

Free energy
binding (kcal/mol)

Inhibition 
constants/Ic (nM)

Free energy
binding (kcal/mol)

Inhibition 
constants/Ic (nM)

1 Boesenbergin B −8.28 850.19 −9.87 58.51
2 Pongachalcone I −9.15 197.52 −10.71 14.46
3 Orientanol E −6.80 10.34 −7.23 5.01
4 6,8‑Diprenylgenistein −7.05 6.77 −7.86 1.73
5 (‑)‑Bidwillon A −7.00 7.42 −7.24 4.90
6 Typhasterol +2.38 ‑ −7.25 4.82
7 Marmin −9.07 222.92 −10.38 25.51
8 Ovalichalcone −6.82 10.05 −8.09 1.18
9 Beta‑mangostin −7.38 3.92 −6.71 12.14
10 Mangostin −7.15 5.76 −8.68 432.60

Fig. 1: Root mean square deviation versus simulation time on ligand compound simulation with histone deacetylase 2
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last 50 frames was due to the fact that in the range of these frames, the 
ligand bonding conditions with the compounds were considered to be 
stable. Boesenbergin B, pongachalcone I, and marmin had higher values 
of free bonding energy than the positive control of N- (2-aminophenyl) 
benzamide ligand so that they were considered to have stable binding 
with macromolecules. The compounds 6,8-diprenylgenistein, and 
mangostin, which had a free energy value lower than the positive 
control, did not interact stably, as shown by the fact that they took 
additional simulation time to achieve a stable state of interaction 
(Table 2).

Visualization of molecular docking results on histone deacetylase 
macromolecule 2 (HDAC2)
Visual analysis was performed to see the interaction between ligand 
and amino acid residues on macromolecule HDAC2. Visualization was 
done using LigandScout 4.09.3 by inserting the ligand into the binding 
site on the macromolecule and then docking using the integrated 
AutoDock program. Visualization of the ligands interaction with 
macromolecules using this program was displayed in two-dimensional 
and 3D ways and could display good quality visual images for the 
benefit of publication [9]. From the interaction visualization results, 
the binding amino acid residues and interaction features could be 
compared with the LLX-positive crystal ligand control to see the 
interaction trend between ligand and macromolecules. Similarities 
of the amino acid residues and identical interaction features between 
ligand and positive control showed the extent of ligand interaction 
with macromolecules.

Hydrogen bonds
Hydrogen bonds are divided into three types based on occupancy 
percentages: Very weak hydrogen bonds (25–50%), strong hydrogen 
bonds (50–75%), and very strong hydrogen bonds (75–100%) [10]. 
Based on those percentages, all bonds between the donor and the 
hydrogen bonds during simulation were recorded to determine 
which had 25%–100% occupancy since this range was considered to 
constitute significant bonding interactions. Based on comparisons of 
the six compounds (Table 3), the active N-(2-aminophenyl) benzamide 

ligand crystal had good hydrogen bonding interaction and good affinity 
values on Hie136 residues in two donors with occupancy 82.30% 
and 71.40%; Tyr298 residue on three acceptors with occupancy 
52.85%, 34.30%, and 25.40%; Gly144 with occupancy 47.10%; and 
Gly295 at 39.10%. Gly295 and Asp259 residues had occupancy of 
respectively 31.70% and 28.15%, and interacted with boesenbergin B. 
Pongachalcone I interacted with the Gly133 residue on two donors with 
different occupancy ranges of 89.05% and 32.10%.

As shown in Table 3, each compound had a number of hydrogen 
bonding interactions with different occupancy values. Increasing 
the amount of hydrogen bonds between the amino acid residues 
at 25–100% from the compound and the macromolecule HDAC2 
will increase the hydrogen bonding interaction, especially if the 
interaction had a high occupancy value (the hydrogen bond was 
considered stable when the occupancy >50%) [11]. Pongachalcone I 
with interaction between the Lig1 donor residue and Gly133 acceptor 
had an occupancy value of 89.05%, marmin with the Met25 donor 
residue and Unl1 acceptor had an occupancy value of 57.85%, and 
mangostin on the residue Unl1 as donor and Gln21 as acceptor had 
an occupancy value of 54.60%.

The hydrogen bond distance between the amino acid residues was 
analyzed using PyMol, by visualizing the macromolecule ligand 
structure then calculating the distance of the hydrogen bond by 
connecting the donor and the hydrogen bond acceptor. The results 
of the hydrogen bond analysis using the visual molecular dynamics 
program were in hbonds.dat and hbonds-details.dat format, where the 
hbonds.dat file showed the number of hydrogen bonds that occurred 
during the molecular dynamics simulation, and then, the data were 
plotted into graphical form using Microsoft Excel. The hbonds-details.
dat file described the interaction of acceptors and hydrogen donors 
from amino acid residues with ligands and showed occupancy to 
predict the value of the hydrogen bonding interaction that occurred 
(Table 3). The amount of hydrogen bond interaction versus simulation 
time (Fig.3) show the highest number of hydrogen bond in LLX followed 
by Boesenbergin B. The number of hydrogen bond in LLX as the crystal 

Table 2: Values of free energy using MMGBSA, MMPBSA, and the docking of ligands and compounds against the macromolecule HDAC2

Compound ΔG MMGBSA
(kcal/mol)

ΔG MMPBSA
(kcal/mol)

ΔDocking G
(kcal/mol) Autodock4Zn

Ligand crystal N‑(2‑aminophenyl) benzamide −30.2297 −16.9679 −10.27
Boesenbergin B −39.0787 −25.6787 −8.28
Pongachalcone I −34.6796 −19.5095 −9.15
6,8‑Diprenylgenistein −15.6667 −16.7687 −7.05
Marmin −32.5167 −23.3797 −9.07
Mangostin −20.8497 −19.3828 −7.15
HDAC2: Histone deacetylase 2

Fig. 2: Root mean square fluctuation on ligand compound simulations with histone deacetylase 2
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ligand in HDAC2 (PDB ID 3MAX) is stable during 18 ns, but the other 
ligand shows fluctuation and less number of hydrogen bond.

CONCLUSION

Based on the results of virtual screening analysis of molecular 
docking and simulation of molecular dynamics, it could be concluded 
that pongachalcone I, marmin, boesenbergin B, mangostin, and 
6,8-diprenylgenistein compounds had the potential to show bond 
interaction with value (ΔG) were −9.15, −9.07, −8.28, −7.15, and −7.05, 
respectively. Based on the molecular dynamics simulations of the five 
compounds, marmin was considered to provide the best overall activity of 
analysis. The marmin compounds showed similarity in amino acid residues 
to the positive control for Phe210C, Phe155C, Leu276C, Tyr308C, Met35C, 
and Leu144C and provided the best stability in the RMSD graph. HDAC2 
inhibitors interacted with the essential amino acid residues and acted 
as the active sites of macromolecules on the residues His145C, Tyr308C, 
Zn379C, Leu276C, Phe155C, Phe210C, Leu144C, and Met35C. Simulation 
analysis of molecular dynamics from hits compound showed that analysis 
with MMGBSA gave higher free energy binding value than MMPBSA.
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