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ABSTRACT 

Objective: The present study involves the development of SNEDDS employing essential oils for enhancing biopharmaceutical performance.  

Methods: Preliminary investigations suggested the selection of cinnamon oil as an essential oil, tween 60 as a surfactant, while transcutol HP as a 

cosolvent for formulating SNEDDS. Formulations evaluated for stability, robustness to dilution, and emulsification time, droplet size, zeta potential 

(ζ), cloud point, in vitro drug release, drug excipient compatibility, TEM, stability assessment and in vivo pharmacokinetic performance in rats. 

Results: All formulations were robust, stable, and revealed excellent emulsification time<40 s, with fine droplet size (11.41±2.41 nm), lower PDI 

(0.028-0.277). Formulation F(FLD)6 exhibited a release of 97.7% within 4h, and TEM photograph confirmed spherical droplets. The bioavailability 

results revealed a higher rate and extent of absorption, AUC, and Cmax for the formulations found to be 1212.4 and 355.40±13.67 (p<0.05). The 

results recommend that the developed formulation approach offers bioavailability enhancement of FLD.  

Conclusion: The study concluded that SNEDDS would be an effective formulation system in increasing the aqueous solubility and potentially 

bioavailability. Furthermore, it can be applied for other therapeutic categories of drugs belonging to BCS class II and IV that show comparable 

biopharmaceutical challenges. 
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INTRODUCTION 

Felodipine (FLD) is a Biopharmaceutical Classification System (BCS) 

class II, belonging to a therapeutic category of anti-hypertensive [1]. 

Due to its susceptibility towards hepatic metabolism and 

lipophilicity, FLD has poor oral bioavailability. Palpably, the oral 

route is preferred by its potential physiological aids, besides patient 

compliance. Various formulation systems were developed for 

enhancing FLD oral bioavailability, including microparticles, solid 

dispersions, and nanoparticles [2, 3]. 

In recent times, oral lipid-based formulation systems have gained 

much significance in enhancing the solubility, followed by oral 

bioavailability of lipophilic molecules [4]. Lipid-based systems vary 

from simple to complex isotropic mixtures of oils, surfactants, and 

co-surfactant/cosolvents [5]. Apart from enhancing solubility, these 

systems also tend to improve absorption by several auxiliary 

mechanisms like inhibition of efflux transport mediated by P-

glycoprotein, promoting lymphatic transport surpassing the first-

pass metabolism and enhancing membrane permeability [6, 7].  

Self-nano-emulsifying drug delivery system (SNEDDS) is one of the 

most effective approaches amongst lipid-based systems for 

enhancing solubility and the bioavailability of lipophilic molecules 

[8]. SNEDDS is a simple isotropic blend of oil, surfactant, and co-

surfactant/cosolvent and drug, which spontaneously yield rapid 

ultrafine O/W nanoemulsion under mild agitation and upon 

subsequent dilution in gastro-intestinal fluids with a droplet size 

range of<100 nm, aiding large surface for effective release of drug 

for absorption [9]. Similarly, to the enhanced solubility and 

dissolution, bioavailability can also be influenced by uptake by 

lymphatic transport.  

Our current study aims to formulate FLD loaded SNEDDS for 

enhancement of its solubility, dissolution. Subsequently, to enhance 

oral bioavailability by employing essential oils as a capable excipient 

for self-emulsification. Comparative evaluation of optimized 

formulation with FLD-suspension for their in vitro drug release and 

in vivo pharmacokinetic study in rats was studied. 

MATERIALS AND METHODS 

Materials 

FLD was a generous gift from Aurobindo Pharma Ltd., (Hyderabad, 

India). Caproyl 90
®, Transcutol HP®, Labrafil M 1944 � �

®, 

Labrasol
®

 were kindly gifted by Gattefosse India Pvt Ltd (Mumbai, 

India). Clove oil, Polyethylene glycol-200 Molychem (Mumbai, India), 

Anise Oil, Cinnamon Oil, Orange Oil, Lemon Oil Genuine Chemicals 

Co. (Mumbai, India), Peppermint Oil Yuuca Enterprises (Mumbai, 

India), Tween–60 Sisco Research Laboratory (Mumbai, India). 

Dialysis membrane (MWCO 12 to 14 KD) procured from Himedia 

(Mumbai, India). All other reagents and chemicals were stringently 

used of analytical grade and used as received. 

Methods 

Saturation solubility study 

The saturation solubility of FLD has been carried out in several 

oils, surfactants and co-surfactant/co-solvents using a water bath 

shaker [10, 11]. FLD was added in an excess amount to each of 

closed glass vials containing about 2 ml of each vehicle. The 

attained mixtures were initially vortexed for 5 min to facilitate 

solubilization. The blends were placed in a controlled temperature 

of 37±0.5 ℃ in a water bath shaker (REMI, India) for a period of 72 

h to obtain equilibrium. Then, the samples were subjected to 

centrifugation at 4500 rpm for 20 min to separate the undissolved 

drug. The supernatant was filtered through 0.45 µm (Whatman, 

USA) membrane filter. All filtrates were suitably diluted with 

methanol and analyzed spectrophotometrically at λmax 238 nm by 

UV-vis spectrophotometer (Shimadzu, Japan).  

Pseudo-ternary phase diagram study 

From the results of the saturation solubility, miscibility, and 

emulsification efficacy, cinnamon oil as oil phase, tween 60 as 

surfactant and transcutol HP as co-solvent selected for SNEDDS 

formulation. The phase diagrams of oil, surfactant–co-solvent 

mixture (Smix) and double distilled water plotted using a water 
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titration method. The ratio of surfactant to co-surfactant varied from 

1:3 to 3:1. For each pseudo ternary phase diagram at a specific 

surfactant/cosurfactant weight ratio, the blends of oil, surfactant 

and cosurfactant prepared with the ratio of oil to the bends of 

surfactant and cosurfactant at 9:1 to 1:9 [12, 13]. All the ratios 

studied for visual clarity and spontaneity of emulsification. The 

blends considered to be good when a clear and transparent 

emulsion was formed spontaneously without any phase separation 

on standing [14]. In order to optimize the concentration selection of 

the nanoemulsion region form the phase diagrams was since 

solution remain clear regardless of infinite dilution. The phase 

diagrams plotted using ProSim ternary diagram software to detect 

nano emulsifying region.  

Preparation of FLD loaded SNEDDS 

FLD is most frequently available in the dose of 10 mg, FLD loaded 
SNEDDS prepared in the doses of 10 mg. The preparation of SNEDDS 
achieved with simple blending where the FLD was dissolved in an 
isotropic mixture of lipid, surfactant and cosolvent with vortex shaker 
for 5 min, to acquire a homogeneous mixture. A total of ten formulations 
with 10 mg of FLD prepared to scrutinize through spontaneous 
emulsification method, which was further characterized for kinetic 
stability, visual observation, robustness to dilution, emulsification, 
droplet size, zeta potential (ζ), cloud point, in vitro drug release, drug 
excipient compatibility, TEM, stability assessment and in vivo 
pharmacokinetic performance in rats. The composition of the FLD 
loaded SNEDDS is exhibited in (table 1). 

  

Table 1: Formulation composition of FLD loaded SNEDDS (%V/V) 

Formulation code Components (% V/V) 

Cinnamon Oil Tween 60 Transcutol HP 

F(FLD)1 7.5 69.4 23.1 

F(FLD)2 10 67.5 22.5 

F(FLD)3 12.5 65.5 22 

F(FLD)4 15 63.75 21.25 

F(FLD)5 17.5 61.9 20.6 

F(FLD)6 20 60 20 

F(FLD)7 22.5 58.14 19.36 

F(FLD)8 25 56.25 18.75 

F(FLD)9 27.5 54.38 18.12 

F(FLD)10 30 52.5 17.5 

 

Kinetic stability studies 

Nanoemulsions are said to be kinetically stable systems. The chosen 

ten formulations were imperilled to kinetic stability by employing 

heating and cooling cycle and centrifugation tests. Formulations 

which were found kinetically stable were selected for further 

evaluation [15]. 

Heating–cooling cycle  

The cycles involved six cycles were the formulations were kept at 

refrigerator temperature, 5 and 45 for 48 h for each cycle. The 

formulations scrutinized for drug precipitation and phase 

separation. Further, all formulations diluted with distilled water 

(1:50), and resulting nanoemulsions examined for instability 

glitches — those formulations which are stable at these 

temperatures further subjected to centrifugation test. 

Centrifugation test 

In this assessment, all formulations were diluted with distilled water 

(1:50) and subjected to centrifugation at 3500 rpm for 30 min. Post 

centrifugation, the formulations were screened for instability like 

phase separation, creaming or cake formation. Such unstable 

formulations excluded from further studies, and stable formulations 

carried out for further parameters. 

Robustness to dilution  

This study involved the assessment of formulations for physical 

changes upon diluting by 50, 100-and 1000-fold with distilled water, 

0.1 N HCl and phosphate buffer (pH 6.8), respectively. Post dilution, 

the visual aspect was judged after 2 h. Furthermore, the resultant 

nanoemulsions were kept for 24 h and observed for any physical 

changes like phase separation, cloudiness or precipitation. All the 

formulations which yield clear nanoemulsions at different dilution 

pleats in examined media were said to pass this test [16]. 

Self-emulsification efficiency 

The rate of emulsification (self-emulsification time) has been 

defined as the efficiency of the formulations to disperse upon 

aqueous dilution conferring to the method described by [17]. About 

1 ml of each formulation was added dropwise to 250 ml of 

phosphate buffer (pH 6.8) in USP dissolution apparatus II 

(Electrolab TDT 06L). The paddle speed was adjusted to 50 rpm to 

facilitate mild agitation with the temperature-maintained 37±5 ℃ — 

the self-emulsification time given by the time required for the 

preconcentrate to yield homogeneous dispersion. Formulations 

passing the test carried out for further studies.  

Characterization of the SNEDDS formulations 

Based on the results of prior studies, six of the formulations 

(F(FLD)1, F(FLD)2, F(FLD)3, F(FLD)4, F(FLD)5 and F(FLD)6) were 

selected for further characterization.  

Cloud point measurement  

Each formulation was diluted with distilled water at a ratio of 1:50 

and placed in a water bath with a slow rise in temperature (5 

℃/min). Cloud point was measured as the temperature at which the 

first sign of turbidity was visually observed [18].  

Determination of zeta potential (ζ); mean droplet size and 

polydispersity index  

Zeta potential means droplet size and polydispersity index of 

nanoemulsions were determined post-100-fold dilution of selected 

formulations with distilled water were determined by dynamic light 

scattering (DLS) technique using Malvern Zetasizer Nano (Malvern 

Instruments, UK). 

In vitro drug release study 

This study involved the use of the dialysis bag method (Dialysis 

membrane MWCO 12 to 14 KD, Himedia., India) with some 

modifications [19, 20]. The drug release was estimated by diluting 

from each formulation (equivalent to 5 mg FLD) with phosphate 

buffer (pH 6.8), then was loaded into the pre-soaked membrane and 

clamped on both sides. The release medium (500 ml of phosphate 

buffer pH 6.8) was added to the apparatus. The secured membrane 

was tied to the paddle of the apparatus USP dissolution apparatus II 

(Electrolab TDT 06L) and allowed to rotate freely. The experiment 

was thermostatically controlled at 37±0.5 ℃, and stirred 50 rpm. At 

predetermined time intervals, 5 ml of sample was withdrawn from 

the medium and immediately replenished with the same volume of 

fresh medium. All the samples were analysed spectro-

photometrically with necessary dilutions at λmax 238 nm. The release 

patterns compared to that of pure drug suspension (with an 

equivalent drug concentration of test formulations).  
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Thermal analysis  

The endothermic melting temperature for pure FLD powder, FLD 

loaded SNEDDS was determined using DSC (DSC-TA instruments 

USA Q10). The pure FLD and FLD loaded SNEDDS were respectively 

packed in an aluminium pan and the thermogram was recorded with 

a rate of 10 ℃/min, over a temperature range of 50-300	� under a 

nitrogen atmosphere using the empty pan as the reference.  

Fourier-transform infrared (FTIR) spectroscopy 

The probable interactions between the drug and employed 

excipients were studied by FTIR spectroscopy. The IR spectra of 

pure FLD powder and FLD loaded SNEDDS were carried out using 

Bruker Vertex 70 FT-IR spectrometer (Bruker, USA). The samples 

were prepared by KBr pellet method. The spectrum was recorded 

from regions of 4000 cm-1 to 400 cm-1 [21]. 

Transmission electron microscopy (TEM) 

In this investigation, the morphology of FLD loaded SNEDDS studied 

using transmission electron microscopy after a 1000-fold dilution 

with distilled water using JEM 2100 (JOEL, Japan). On a copper grid, 

one drop of the sample was deposited and allowed to stand for 5 

min. The excess was removed with a blotting paper. The prepared 

grid was latter negatively stained with a drop of phosphotungstic 

acid (1% w/v) for 30 s. The grid was air-dried and then was 

observed by TEM. 

In vivo study 

The pharmacokinetic study was carried out in male Wistar rats 

weighing 200-250 g. The Institutional Animal Ethical Committee of 

GITAM Institute of Pharmacy, India, approved the study (Reg. no. 

IAEC/GIP-1287/KTS-S/Approved/9/2019). All the rats were 

clinically healthy during the entire study and strictly housed under 

standard conditions of temperature and humidity. The in 

vivo bioavailability studies for both FLD-suspension and F (FLD)6 

carried out in two groups (n=6). Food was withdrawn 12 h prior to 

the study water was provided ad libitum and no food was allowed 

post-dosing until the end of the study (after 8 h). Each of the animals 

received a single dose (1 mg/kg) of FLD-suspension as a pure drug 

with a group I and the SNEDDS formulation F (FLD) 6 with group II 

orally with the help of oral feeding needle. Blood samples (0.5 ml) 

were collected at predetermined intervals of predose 0 hr and 0.5, 1, 

2, 3, 4, 6, and 8 hr post oral dose administration in pre-coated 

K2EDTA tubes. The samples were centrifuged at 4500 rpm for 20 

min, and the separated plasma samples stored at refrigerated 

conditions (2-4 ℃) until analysis. FLD concentrations in plasma 

samples were determined suitably by HPLC method [22]. 

RESULTS AND DISCUSSION 

Saturation solubility study 

The pertinent solubility of a drug substance in the excipients is 
categorically crucial for developing a successful formulation besides 
avoiding drug precipitation during in situ self-emulsification in the 
gut region. The (fig. 1) exemplifies the saturation solubility data of 
FLD in various essential oils, surfactants and co-solvents. Among 
various essential oils employed, the highest solubility was observed 
in cinnamon oil (i.e. 281±1.07 mg/ml). Similarly, among surfactants 
and co-solvents employed tween 60 (152±1.22 mg/ml) and 
transcutol HP (i.e. 363±1.29 mg/ml) exhibited the highest 
solubilization capacity and spontaneity of the emulsification ability. 
As a result of low toxicity and higher stability to the effect of pH and 
ionic strength when compared to ionic and amphiphilic surfactants, 
nonionic surfactants are typically preferred [20]. In addition, the 
higher solubility of the drug in nonionic surfactants can be described 
as a result of higher HLB value, which enables faster solubilization of 
lipophilic drugs and imparts spontaneous emulsification ability [23]. 
Transcutol HP was selected as a co-solvent, which furthermore 
reduces the interfacial tension and improves the solubility of FLD. 

  

 

Fig. 1: Saturation solubility of FLD in different vehicles (mean±SD (N=3)) 

 

Pseudo ternary phase diagram study  

To identify the self-emulsifying regions, pseudo-ternary plots were 

constructed. Clear isotropic regions determine the self-emulsifying 

regions which were recognized by optical observation. Besides, it 

also helps in defining the appropriate excipient ratios for the 

development of formulations that guarantee the spontaneity of in 

situ self-emulsification in the gut region [24]. 

Fig. 2(A-E) demonstrates the pseudo-ternary diagrams constructed 
for demarcating the suitable nanoemulsion region for FLD loaded 
SNEDDS. The shaded region specifies the self-emulsifying region, 
and the higher area indicated for cinnamon oil and Smix ration of 3:1 
containing tween 60–transcutol HP. As it is understood, that all 

surfactants significantly irritate and are poorly tolerated, hence 
large magnitudes of surfactants may lead to irritation in the GI tract, 
and therefore ideally emulsifying systems with more substantial 
portions of essential oils are selected [25]. In the case of self-
emulsifying systems, free energy required is very minimal, as 
surfactants play a vital role in minimizing the interfacial tension to 
form kinetically stable emulsions [26]. The studies were also carried 
to explore the effects of Smix ratios 1:3, 1:2, 1:1, and 2:1, after 
observing the clarity, stability for 48h, revealed that the 
nanoemulsion region further increases in 3:1 ratio, owing to 
increase in the surfactant concentration in Smix ratio has increased 
the nanoemulsion region, and this can be explained owing to higher 
HLB value (i.e. 14.9) of tween 60 which readily enhances the 
emulsification efficiency for forming nanoemulsions.  
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In brief, amid various Smix ratios explored, the ratio 3:1, was selected 

for the formulation of the self-emulsifying system. Ten formulations 

were selected for the drug incorporation and further study. These 

mixtures were identified within the nanoemulsion region of studied 

pseudo-ternary plots, and the compositions of the ten formulations 

loaded with FLD is shown in (table 1). 

  

 

Fig. 2: Phase behaviour of nanoemulsion formed from cinnamon oil with Tween 60: Transcutol HP and water varying Tween 80: 

Transcutol HP ratio as (A) 1:3; (B) 1:2; (C) 1:1; (D) 2:1; (E) 3:1 

 

Kinetic stability 

As the SNEDDS forms nanoemulsion spontaneously, the formulation 

should possess the ability to withstand stability against creaming, 

precipitation and caking. The FLD loaded systems portrayed 

excellent stability. All dispersions were clear and retained their 

visual facet during the study signifying their nanoemulsion nature. 

Accordingly, the study has not revealed any distress to the applied 

conditions and confirmed the stability of the prepared formulations. 

Robustness to dilution 

Robustness to dilution helps to understand the drug 

precipitation at higher dilutions, as such precipitations alter and 

reduce the in vivo fate of drug absorption. All the prepared 

formulations were exposed to different folds of dilutions in 

various media (distilled water, pH 6.8 and pH 1.2) to mimic the 

in vivo conditions and to ensure the formation of a uniform 

formulation. Almost all formulations exhibited to be robust to 

the dilutions except four formulations (F(FLD)7 to F(FLD)10 

showed immediate milky dispersions. The higher concentrations 

of oil components could lead to loss of clarity [27]. Formulations 

(F(FLD)1 to F(FLD)6, were determined to retain their clarity at 

different dilution volumes of various media thus confirming 

their robustness. 

Self-emulsification efficiency 

Post-oral administration the formulations are exposed to the in-situ 

gut conditions where the formulations experience aqueous dilution, 

thereby the preparations should immediately disperse under mild 

agitation provided by the peristaltic agitations to yield a fine 

nanoemulsion. Therefore, self-emulsification time is a significant 

assessment parameter for self-emulsification efficiency. Amid the 

developed formulations, six formulations (F(FLD)1 to F(FLD)6 were 

determined to be of grade A regardless of the dispersion media.  

Irrespective of the dispersing medium, all formulations portrayed a 

short emulsification time of<40 (s) (table 2), confirming their high 

emulsification efficiency. Formulations with higher concentrations 

of essential oil required a longer time to get completely dispersed. 

Subsequently, formulations exhibited increased spontaneity for 

nanoemulsion formation as the concentration of Smix increases in the 

formulations. One reason could be extreme penetration of aqueous 

phase into the oil phase triggering substantial interfacial disruption, 

and thereby droplets moved into the bulk aqueous phase. 
  

Table 2: Self-emulsification time for selected formulations in different dispersing media 

Formulation code Self-emulsification time (s)* 

Phosphate buffer (pH 6.8) Distilled water 0.1N HCl (pH 1.2) 

F(FLD)1 8 9 11 

F(FLD)2 12 11 13 

F(FLD)3 16 15 18 

F(FLD)4 19 21 22 

F(FLD)5 24 25 28 

F(FLD)6 33 29 35 

*Data expressed as mean of 3 

 

Characterization of the SNEDDS formulations 

Along with robustness to dilution those formulations that exhibited 

good kinetic stability and showed high emulsification efficiency with 

excellent visual grade post dilutions, namely (F(FLD)1 to F(FLD)6 

carried for further characterization.  

Cloud point measurement  

The temperature above which the dispersion turns turbid is said to 

be cloud point, and this is due to dehydration of polyethylene oxide 

chains of the non-ionic surfactants leading to lowered HLB values. 

For the selected formulations, cloud points were (table 3) very high; 

hence were determined to be competent for body temperature, 

therefore, circumventing phase separation in the GIT. Higher cloud 

point temperature could be attributed to the solubility of the drug in 

the formulation components, with an optimized ratio of Smix along 

with higher HLB values. 

Determination of zeta potential (ζ); mean droplet size and 
polydispersity index  

The droplet size and the interfacial area are inversely proportional; 
therefore, the smaller droplet size results in better diffusion and 
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absorption owing to the increased interfacial area. Accordingly, the 
droplet size distribution of nanoemulsions post-self-emulsification 
becomes significant is assessing the in vivo performance of the 
formulation [28]. 

The mean droplet size of the formulations (table 3) from the study 
confirmed that the formulations showed droplet size in the 

nanometric range (fig. 3). All formulations exhibited minor PDI 
values indicating excellent uniformity, Smix may act synergistically to 
lower the interfacial tension, consequently yield fine nanoemulsion. 
As a result of the ultrafine emulsion system, which imparts a 
robustness to flocculation or towards coalescence, making the 
system kinetically stable. The kinetic stability becomes significant in 
long term physical stability. 

 

Table 3: Cloud point, droplet size, zeta potential, and PDI for selected formulations 

Formulation code Cloud point (℃) Droplet size (nm) Zeta potential (mV) PDI 

F(FLD)1 89 9.680±1.72 -3.65±1.97 0.028 

F(FLD)2 86 9.917±2.12 -3.68±1.49 0.067 

F(FLD)3 82 10.17±2.62 -5.90±1.66 0.129 

F(FLD)4 80 10.39±1.69 -4.84±2.32 0.182 

F(FLD)5 75 11.10±1.33 -6.87±1.52 0.232 

F(FLD)6 73 11.41±2.41 -7.22±2.81 0.277 

*Data expressed as (mean±SD (N=3)) 

 

 

Fig. 3: Droplet size distribution of FLD-loaded nanoemulsion F(FLD)6 

 

 

Fig. 4: Zeta potential (ζ) mV of FLD-loaded nano-emulsion F(FLD)6 
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The mean droplet size for formulations varied insignificantly 
compared to all formulations F(FLD)5 and F(FLD)6, exhibited 
slightly larger mean droplet size when compared to other 
formulations. Majorly due to higher essential oil concentration 
compared to other formulations.  

All the selected formulations exhibited negative zeta potential values 

(table 3) (fig. 4). The zeta potential is interrelated to the electrostatic 

repulsions and aggregation of the droplets. Coalescence is inhibited 

with the higher values of zeta potential, thus enabling the stability of 

emulsions [29]. The negative charges attributed to ionization free fatty 

acid chains present in the compositions of the formulation system. 

In vitro release study 

Only when the free drug molecules get released from the entrapped 

droplets of nanoemulsion system, evaluation can be achieved. Thus, 

the formulation system cannot be assessed by the conventional 

release approach. Therefore, the dialysis bag method adapted for the 

study [30]. The comparative study of release profiles exhibited 

definite improvement in the drug release rate from the formulations 

when compared to the pure drug suspension. Release patterns of the 

formulations along with FLD suspension, are shown in (fig. 5). The 

higher release from the formulation system may be due to the higher 

availability of dissolved FLD from the droplets that provides a larger 

surface area for its release.  

Drug release from F(FLD)6 was significantly higher compared to 

other formulations owing to entrapment of free drug in the lipid, 

followed by spontaneous emulsification enabled by emulsifying 

agents. An almost complete release of 97.7% was achieved by the 

best formulation F(FLD)6 within 4 h, whereas only 12% of drug 

release was achieved from a drug suspension. The results 

significantly endorse marked improvement of FLD solubilization 

with full potential for enhancing the oral bioavailability. 

 

 

Fig. 5: In vitro (%) cumulative drug release profile of FLD loaded SNEDDS and FLD-suspension in phosphate buffer 6.8 (mean±SD (N=3)) 

 

Thermal analysis 

The DSC thermograms of pure drug sample and the FLD loaded-SNEDDS 

formulations shown in (fig. 6a and 6b). Pure drug powder exhibited a 

sharp endothermic peak at 145.36 °C, with almost concurrent to the 

melting point confirming its purity, suggesting the crystallinity of drugs. 

Concerning to the formulation mixture, exhibited broad endothermic 

peak and drifted little ahead by approximately 15 °C, maybe after FLD 

blended with the lipid excipients, it is likely that FLD was in an 

amorphous, molecularly dispersed state in the lipid of the formulation. 

 

 

Fig. 6: (a) DSC thermogram of FLD pure drug, (b) DSC thermogram of FLD loaded nano-formulation mixture 
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Fourier-transform infrared (FTIR) spectroscopy 

The FTIR spectra for FLD and its SNEDDS are shown in (fig. 7a and 7b). 

FTIR spectra of FLD exhibited characteristic peaks of C-H Strat 

3523.69 cm-1, Aromatic-Str at 3071.21 cm-1, C=O (carboxylate) at 

1620.20 cm-1, C-N Strat 1099.42 cm-1, Aromatic C-H bending at 616.82 

cm-1. Correspondingly the FTIR spectra of SNEDDS also showed all 

these characteristic peaks with minor shifts. These results from FTIR 

spectral analysis confirmed that there was no chemical interaction 

between drug and excipients used in the formulation. 

 

 

Fig. 7: (a) FTIR spectra of FLD pure drug, (b) FTIR spectra of FLD loaded nano-formulation mixture 

 

 

Fig. 8: TEM photograph of (F(FLD)6) nano-formulation 

 

 

Fig. 9: Plasma concentrations of FLD following oral administration of (A) FLD Susp and (B) F(FLD)6 (mean±SD (N=6)) 
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Transmission electron microscopy (TEM) 

The surface morphology of the reconstituted formulation observed 

using TEM (fig. 8). The TEM photograph confirms that all droplets 

were homogenous, spherically shaped with good integrity and these 

nanosized droplets had no sign of aggregation, besides photograph 

did not reveal any precipitation of FLD. 

In vivo study 

The in vivo pharmacokinetic behaviour of the FLD loaded SNEDDS 

was assessed and compared with the pure drug suspension 

following oral administration to the two groups of Wistar rats (n=6). 

The plasma concentration versus time profiles of FLD in rats for 

formulations system and drug suspension represented in (fig. 9). 
The results showed that the [AUC]0

∞ and Cmax for the SNEDDS 

formulation found to be 1212.4 and 355.40±13.67 when compared 

to the drug suspension, which was found to be 518.7 and 

148.93±8.92, respectively. The per cent relative bioavailability of 

SNEDDS, when compared with the FLD suspension, was found to be 

245.68, which suggests the significant improvement of the rate and 

extent of absorption. Besides, the Tmax was slightly longer for drug 

suspension when compared to the formulation system. Significant 

differences found between the two formulations regarding [AUC]0
∞ 

and Cmax parameters at p<0.05. 

CONCLUSION 

The present study effectively endorsed successful development and 

formulation of self-nanoemulsifying system as one of the promising 

delivery systems for bioavailability enhancement of FLD. Following 

evaluations, the formulation composed of cinnamon oil with 

20%v/v, tween 60 with 60%v/v and transcutol HP with 20%v/v 

exhibited best results and no incompatibles observed. Essential oils 

were determined to be one of the most proficient oil phases for self-

emulsifying systems and may have significant bioactive effects. The 

formulation enhanced the in vitro release approximately eight times. 

It provided an effective release when compared to a drug 

suspension. 

Furthermore, in vivo studies revealed that best formulation 

exhibited a higher degree of absorption when compared to drug 

suspension with a relative bioavailability of 245.68%. The study 

concluded that SNEDDS would be an effective formulation system in 

increasing the aqueous solubility and potentially bioavailability. 

Furthermore, the formulation strategy may be applied for other 

therapeutic categories of drugs belonging to BCS class II and IV that 

show comparable biopharmaceutical challenges. 
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