• AHMAD AJWAD TALHOUNI Faculty of Pharmacy, Isra University, PO Box 22 and 23, Amman, Jordan,
  • JAMAL ALYOUSSEF ALKRAD Faculty of Pharmacy, Isra University, PO Box 22 and 23, Amman, Jordan,
  • MANAF MOHAMMED AL-DABBAGH Faculty of Pharmacy, Isra University, PO Box 22 and 23, Amman, Jordan
  • HUSAM ABAZID Faculty of Pharmacy, Applied Science Private University, Amman, Jordan



Atenolol, Transdermal, Microemulsions


Objective: Developing novel non-ionic microemulsions (MEs) for transdermal of atenolol as satisfactory alternative drug delivery systems for the oral route.

Methods: Seven MEs were developed then checked for encapsulation of atenolol using Fourier Transform Infrared Spectroscopy (FTIR-spectroscopy) (), isotropy, droplet sizes, rheological properties and transdermal flux using Franz diffusion cell. Furthermore, two MEs with best flux values were selected for bioavailability evaluation after transdermal application over rat’s skin.

Results: The results showed that the MEs complies with colloidal systems properties. Also, the developed MEs were stable throughout the study, ideal viscous systems with droplet sizes below 500 nm and isotropic. Besides, FTIR-spectra could reveal the structure of the MEs and encapsulation of atenolol inside the dispersed phase. Moreover, the flux values of atenolol in MEs through rat’s skin varied with different factors such as atenolol concentration, MEs’s composition, and zetapotential. The highest flux value of the developed systems was 243.5±16.3 µg. cm-2. h-1. Furthermore, the in vivo results showed that using the two tested microemulsions maximum plasma levels of atenolol 5.22±0.43 and 4.06±0.15 mg. ml-1at 8.18 and 3.64 h respectively could be achieved.

Conclusion: The developed microemulsions can be promise formulations for transdermal administration of atenolol as alternative for oral tablets.


Download data is not yet available.

Author Biography

JAMAL ALYOUSSEF ALKRAD, Faculty of Pharmacy, Isra University, PO Box 22 and 23, Amman, Jordan,



Barrett AM, Carter J, Fitzgerald JD, Hull R, Le Count D. A new type of cardioselective adrenoceptive blocking drug. Br J Pharmacol 1973;48:340.

Harry JD, Knapp MF, Linden RJ. Proceedings: antagonism by ICI 66082 of the effects of electrical stimulation on the right ansasubclavia of the dog. Br J Pharmacol 1974;50:457-8.

Heel RC, Brogden RN, Speight TM, Avery GS. Atenolol: a review of its pharmacological properties and therapeutic efficacy in angina pectoris and hypertension. Drugs 1979;17:425–60.

William H, Frishman MD. Atenolol and timolol, two new systemic βadrenoreceptor antagonists. N Engl J Med 1982;306:1456–62.

Fitzgerald JD, Ruffin R, Smedstad KG, Roberts R, McAinsh J. Studies on the pharmacokinetics and pharmacodynamics of atenolol in man. Eur J Clin Pharmacol 1978;13:81-9.

ASHP. AHFS Drug information, AHFS, MD, USA; .2002. p. 1586.

Kim J, Shin SC. Controlled release of atenolol from the ethylene-vinyl acetate matrix. Int J Pharm 2004;273:23-7.

Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Delivery 2014;11:393-407.

Shingade GM, Quazi A, Sabale PM, Grampurohit ND, Gadhave MV, Jadhav SL, et al. Review on: recent trend on transdermal drug delivery system. J Drug Delivery Ther 2012;2:66-75.

Reeves PR, Barnfield DJ, Longshaw S. Disposition and metabolism of atenolol in animals. Xenobiotica 1978;8:305–11.

Inal O, Kiliçarslan M, Ari N, Baykara T. In vitro and in vivo transdermal studies of atenolol using iontophoresis. Acta Pol Pharm 2008;65:29-36.

Anroop B, Ghosh B, Parcha V, Khanam J. Transdermal delivery of atenolol: effect of prodrugs and iontophoresis. Curr Drug Delivery 2009;6:280-90.

Nair A, Reddy C, Jacob S. Delivery of a classical antihypertensive agent through the skin by chemical enhancers and iontophoresis. Skin Res Technol 2009;15:187-94.

Keerthi H, Panakanti PK, Yamsani MR. Design and characterization of atenolol transdermal therapeutic systems: enhancement of permeability via iontophoresis. PDA J Pharm Sci Technol 2012;66:318-32.

Pawar KR, Smith F, Kolli CS, Babu RJ. Effect of lipophilicity on microneedle-mediated iontophoretic transdermal delivery across human skin in vitro. J Pharm Sci 2013;102:3784-91.

Macgregor JM, Rush JE, Rozanski EA, Boothe DM, Belmonte A, Freeman LM. Comparison of pharmacodynamic variables following oral versus transdermal administration of atenolol to healthy cats. Am J Vet Res 2008;69:39-44.

Shin SC, Choi JS. Enhanced bioavailability of atenolol by transdermal administration of the ethylene-vinyl acetate matrix in rabbits. Eur J Pharm Biopharm 2003;56:439–43.

Amjad M, Ehtheshamuddin M, Chand S, Hanifa MS, Asia R, Kumar GS. Formulation and evaluation of transdermal patches of atenolol. ARPB 2011;2:109-19.

Vishal Y, Prakash J, Kishor K, Anjali B, Shailaja D. Preparation and evaluation microemulsion containing an antihypertensive drug. Int J Appl Pharm 2018;10:138-46.

Sahar MF, Shadeed G, El-Syed AK, Gehad AA, Mamdouh MG, Sohier AE. Formulation and evaluation of etodolac lecithin organogel transdermal delivery systems. Int J Pharm Pharm Sci 2015;7:325-34.

Lavanya N, Aparna C, Umamahesh B. Formulation and evaluation of glipizide microemulsion. Int J Pharm Pharm Sci 2016;8:171-6.

Heuschkel S, Goebel A, Neubert RHH. Microemulsions-modern colloidal carrier for dermal and transdermal drug delivery. J Pharm Sci 2008;97:603-31.

Dhingani A, Patel J, Garala K, Raval M, Dharamsi A. Quality by design approach for the development of W/O Type microemulsion based transdermal systems for atenolol. J Disper Sci Technol 2014;35:619-40.

Prapaporn B, Karen K, Anja G, Thomas R, Varaporn BJ. Characterization of microemulsion structures in the pseudoternary phase diagram of isopropyl Palmitate/Water/Brij 97:1-Butanol. AAPS Pharm Sci Tech 2006;7:99-104.

United States Pharmacopeia Convention. United States Pharmacopeia and National Formulary (USP 34-NF 29). United States Pharmacopeia Convention; 2010.

Guidance notes on dermal absorption, OECD Environment, Health and Safety Publications, Series on Testing and Assessment, No. 156, ENV/JM/MONO; 2011. p. 36. Available from: documentpdf/?cote=env/jm/mono(2011)36anddoclanguage=en.

Li CJ, Obata Y, Higashiyama K, Nagai T, Takayama K. Effect of 1-O-ethyl3--butylcyclohexanol on the skin permeation of drugs with different physicochemical characteristics. Int J Pharm 2003;259:193–8.

Council of Europe. European Pharmacopoeia. 4rd edn. Council of Europe, Strasbourg; 2003.

Barbara HS. Infrared spectroscopy: fundamentals and applications. Chichester, UK: John Wiley and Sons Ltd; 2004.

Kahlweit M, Strey R, Firman P, Haase D. Phase behavior of ternary systems: H20-0il-Nonionic surfactant as a near-tricritical phenomenon. Langmuir 1985;1:281-8.

Neubert RHH. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm 2011;77:1–2.

David A. Microemulsions. In: Kreuter J. (Ed) Colloidal drug delivery systems, drug and the pharmaceutical science, a series of textbooks and monographs. New York, USA: Marcel Dekker; 1994. p. 31-65.

Kanjananimmanont S, Ge X, Mupparapu K, Rao G, Potts R, Tolosa L. Passive diffusion of transdermal glucose: noninvasive glucose sensing using a fluorescent glucose binding protein. J Diabetes Sci Technol 2014;8:291-8.



How to Cite

TALHOUNI, A. A., ALKRAD, J. A., AL-DABBAGH, M. M., ABAZID, H., & HUSSEIN-AL-ALI, S. H. (2019). TRANSDERMAL OF ATENOLOL VIA MICROEMULSIONS. International Journal of Applied Pharmaceutics, 11(2), 164–171.



Original Article(s)