• Arif Arrahman Department of Pharmaceutical-Medicinal Chemistry and Bioanalysis, Faculty of Pharmacy, Universitas Indonesia, Depok 16424,
  • Rezi Riadhi Syahdi Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
  • Hana Permatasari Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
  • Intan Fikri Purnama Sari Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
  • Abdul Munim Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.




Gnetum gnemon, [bmim]Br, Trans-resveratrol, Microwave-assisted extraction, Dipeptidyl peptidase-4, Phenolic content


Objective: This study aimed to determine the inhibitory activity of 1-butyl-3-methylimidazolium bromide ([bmim]Br) extracts of melinjo seeds
(Gnetum gnemon) on dipeptidyl peptidase-4 (DPP-4).
Methods: Melinjo seeds were extracted by a [bmim]Br microwave-assisted method using various extraction parameters and the inhibitory activity
of DPP-4 of all extracts was determined in 96-well microplates using Cayman inhibitor screening assay. Determination of trans-resveratrol content
was conducted using a reverse-phase high-performance liquid chromatography method. The total phenolic content was determined using a 96-well
microplate reader. Data analysis for the determination of the optimal extraction conditions was developed by response surface methodology.
Results: The extract obtained from the third run showed the highest inhibition (28.73%) against DPP-4 activity with the total phenolic content of
1.96 mg gallic acid equivalent/g the seed powder.
Conclusion: The analytical results revealed the following optimal conditions: Solvent concentration 1.5 M, liquid-solid ratio 23:1, and extraction time
15 min.


Download data is not yet available.


World Health Organization. Definition, Diagnosis and Classification

of Diabetes Mellitus and its Complications. Part 1: Diagnosis

and Classification of Diabetes Mellitus. Geneva: Department of

Noncommunicable Disease Surveillance; 2009.

Geetha P, Shanmugasundharam P. Drug utilization evaluation of

antidiabetic drugs among Type 2 diabetes patients of Tamil Nadu. Asian

J Pharm Clin Res 2017;10:202-5.

Patel B, Ghate M. Recent approaches to medicinal chemistry and

therapeutic potential of dipeptidyl peptidase-4 (DPP-4) inhibitors. Eur

J Med Chem 2014;74:574-605.

Anhê F, Desjardins Y, Pilon G, Dudonné S, Genovese M, Lajolo F, et al.

Polyphenols and Type 2 diabetes: A prospective review. Pharmanutrition

;1 Suppl 4:105-14.

Mahapatra D, Asati V, Bharti S. ChemInform abstract: Chalcones and

their therapeutic targets for the management of diabetes: Structural and

pharmacological perspectives. Cheminform 2015;46 Suppl:15.

Peng C, Yang Y, Chan K, Wang C, Chen M, Huang C. Hibiscus

sabdariffa Polyphenols alleviate insulin resistance and renal epithelial to

mesenchymal transition: A novel action mechanism mediated by Type 4

dipeptidyl peptidase. J Agric Food Chem 2014;62 Suppl 40:9736-43.

Zhang B, Yang R, Liu CZ. Microwave assisted extraction of chlorogenic

acid from flower buds of Lonicera japonica Thunb. Sep Purif Technol


Udenigwe CC, Ramprasath VR, Aluko RE, Jones PJ. Potential of

resveratrol in anticancer and anti-inflammatory therapy. Nutritrion


Elíes J, Cuí˜nas A, MacDougall DA, Leiro J, Campos-Toimil M.

Trans-resveratrol down-regulates caveolin-1, up-regulates endothelial

NO synthase and reduces their interaction in vascular smooth muscle

andendothelial cells. Food Biosci 2013;1:31-8.

Kundu JK, Surh YJ. Cancer chemopreventive and therapeutic potential

of resveratrol: Mechanistic perspectives. Cancer Lett 2008;269:243-61.

Brasnyo P, Molnar GA, Mohas M, Markó L, Laczy B, Cseh J, et al.

Resveratrol improves insulin sensitivity, reduces oxidative stress

and activates the akt pathway in Type 2 diabetic patients. Br J Nutr


Iliya I, Ali Z, Tanaka T, Iinuma M. Stilbene derivatives from Gnetum

gnemon Linn. Phytochemistry 2002;62:601-6.

Mun’im A, Munadhil MA, Puspitasari N, Azminah A, Yanuar A.

Angiotensin converting enzyme inhibitory activity of melinjo (Gnetum

gnemon L.) seed extracts and molecular docking of its stilbene

constituents. Asian J Pharm Clin Res 2017;10:243-8.

Kato E, Tokunaga Y, Sakan F. Stilbenoids isolated from seeds of

melinjo (Gnetum gnemon L.) and their biological activity. J Agric Food

Chem 2009;2009:2544-9.

Hemwimon S, Pavasant P, Shotipruk A. Microwave- assisted extraction

of antioxidative anthraquinones from roots of Morinda citrifolia. Sep

Purif Technol 2007;54:44-50.

Xiao W, Han L, Shi B. Microwave-assisted extraction of flavonoids

from Radix Astragali. Sep Purif Technol 2008;62:614-8.

Du FY, Xiao X, Li G. Application of ionic liquids in the microwaveassisted

extraction of trans-resveratrol from rhizma polygoni cuspidati.

J Chromatogr A 2007;1140:56-62.

Du FY, Xiao XH, Luo XJ, Li GK. Application of ionic liquids in the

microwave-assisted extraction of polyphenolic compounds from

medicinal plants. Talanta 2009;78:1177-84.

Bobo-García G, Davidov-Pardo G, Arroqui C, Vírseda P, Marín-Arroyo

MR, Navarro M. Intra-laboratory validation of microplate methods for

total phenolic content and antioxidant activity on polyphenolic extracts,

and comparison with conventional spectrophotometric methods. J Sci

Food Agric 2015;95 Suppl 1:204-9.

Ahmad I, Yanuar A, Mulia K, Mun’im A. Optimization of ionic liquidbased

microwave-assisted extraction of polyphenolic content from

Peperomia pellucida (L) Kunth using response surface methodology.

Asian Pac J Trop Biomed 2017;7 Suppl 7:660-5.

Souto HA, Carneiro MC, Seferin M, Senna MJH. Determination of

trans-resveratrol concentrations in Brazilian red wines by HPLC.

J Food Compos Anal 2001;14:441-5.

Wazir D, Ahmad S, Muse R. Antioxidant activities of different parts of

Gnetum gnemon L. J Plant Biochem Biotechnol 2011;20:234-40.

Thomas L, Eckhardt M, Langkopf E, Tadayyon M, Himmelsbach F,

Mark M. (R)-8-(3-Amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-


(BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor,

has a superior potency and longer duration of action compared

with other dipeptidyl peptidase-4 inhibitors. J Pharm Exp Ther

;325 Suppl 1:175-82.

Fan J, Johnson M, Lila M, Yousef G, de Mejia E. Berry and citrus

phenolic compounds inhibit dipeptidyl peptidase IV: Implications

in diabetes management. Evid Based Complementary Altern Med


El Meligy S, El Batch M, Abd El Alem G. Effect of resveratrol on

dipeptidyl peptidase-4 (DPP-4) and phospho enol pyruvate carboxy

kinase (PEPCK) in streptozotocin -induced diabetic rats. Researchgate


Borde MK, Suman RK, Mohanty IR, Deshmukh YA. Dipeptidyl

peptidase-iv inhibitory activities of medicinal plants: Terminalia

arjuna, Commiphora mukul, Gymnema sylvestre, Morinda citrifolia,

Emblica officinalis. Asian J Pharm Clin Res 2016;9:180-2.

Mandal V, Mohan Y, Hemalatha S. Microwave assisted extraction - An

innovative and promising extraction tool for medicinal plant research.

Pharm J 2006;1 Suppl 1:2-11.



How to Cite

Arrahman, A., Syahdi, R. R., Permatasari, H., Sari, I. F. P., & Munim, A. (2018). EFFICACY OF IONIC LIQUID [MIM]BR-BASED MAE ON RESVERATROL AND PHENOLIC COMPOUNDS EXTRACTION FROM GNETUM GNEMON SEEDS AND THEIR DPP-4 INHIBITORY ACTIVITY. International Journal of Applied Pharmaceutics, 10(1), 168–171. https://doi.org/10.22159/ijap.2018.v10s1.36



Original Article(s)