DETERMINATION OF CARBOHYDRATES CONTENT IN GENTIANA CRUCIATA L. BY GC/MS METHOD

Authors

  • LILIIA BUDNIAK Department of Pharmacy Management, Economics and Technology, І. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine
  • LIUDMYLA SLOBODIANIUK Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine
  • SVITLANA MARCHYSHYN Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine
  • PAVLINA KLEPACH Department of Pharmacy, Bukovinian State Medical University, Theatralna sq. 2, 58002, Chernivtsi, Ukraine
  • YANA HONCHARUK Department of Pharmacy, Bukovinian State Medical University, Theatralna sq. 2, 58002, Chernivtsi, Ukraine

DOI:

https://doi.org/10.22159/ijap.2021v13i1.39820

Keywords:

Gentiana cruciata L, Carbohydrates, GCMS, Herb

Abstract

Objective: Thus, the aim of our research was to determine the qualitative composition and quantitative content of carbohydrates in the studied plant material with the prospect of its application as a medicinal plant raw material.

Methods: The carbohydrates of the herb of Gentiana cruciata L. determined by GC/MS method. Identification of monosaccharides was based on comparing their retention times with retention times of standards of the mass spectral library NIST 02. Quantification was done by using sorbitol added to the sample.

Results: The quantitative content of 4 free carbohydrates such as D-saccharose (38.39 mg/g), D-Pinitol (12.01 mg/g), D-glucose (10.05 mg/g) and D-fructose (1.69 mg/g) was established in the herb of Gentiana cruciata L. Also, this method established the qualitative composition and quantitative content of eight carbohydrates (monosaccharides and their derivatives after hydrolysis): D-glucose (29.66 mg/g), D-Pinitol (22.24 mg/g), L-arabinose (4.26 mg/g), D-galactose (3.55 mg/g), D-xylose (1.80 mg/g), L-rhamnose (1.49 mg/g), D-Dulcitol (0.76 mg/g) and D-mannose (0.44 mg/g).

Conclusion: The results of the study showed that carbohydrates from the Gentiana cruciata L. can be used as important resources of new ingredients for the pharmaceutical industry.

Downloads

Download data is not yet available.

References

Marchyshyn SM, Stoiko LI, Pokotylo OO. Research of the chemical composition of some plants from Gentianaceae family. Med Clin Chem 2017;3:23-8.

Tomiczak K, Mikula A, Niedziela A, Wojcik Lewandowska A, Domzalska L, Rybczynski JJ. Somatic embryogenesis in the family Gentianaceae and its biotechnological application. Front Plant Sci 2019;10:762.

Mikula A, Skierski J, Rybczynski JJ. Somatic embryogenesis of Gentiana genus III. Characterization of three-year-old embryogenic suspensions of G. pannonica originated from various seedling explants. Acta Physiologiae Plantarum 2002;24:311-22.

Hayta S, Akgun IH, Ganzera M, Bedir E, Gurel A. Shoot proliferation and HPLC-determination of iridoid glycosides in clones of Gentiana cruciata L. PCTOC 2011;107:175-80.

Mirzaee F, Hosseini A, Jouybari HB, Davoodi A, Azadbakht M. Medicinal, biological and phytochemical properties of Gentiana species. J Tradit Complement Med 2017;7:400-8.

Liang Hong Ni, Zhi-Li Zhao. A morphometric comparison of three closely related species of Gentiana (Gentianaceae), endemic to the region of the qinghai–tibet Plateau. Botany 2018;96:209-15.

Darzuli N, Budniak L, Hroshovyi T. Selected excipients in oral solid dosage form with dry extract of Pyrola rotundifolia L. IJAP 2019;11:210-6.

Slobodianiuk L, Budniak L, Marchyshyn S, Sinichenko A, Demydiak O. Determination of amino acids of cultivated species of the genus Primula L. Biointerface Res Appl Chem 2021;11:8969-77.

Drobyk NM, Mel’nyk VM, Hrytsak LR, Kravets NB, Konvalyuk II, Twardovska MO, et al. Establishment and analysis of tissue and fast-growing normal root cultures of four Gentiana L. species, rare highland medicinal plants. Biopolym Cell 2018;34:461-76.

Rybczynski J, Wojcik A. The effect of L-glutamine on the genetic transformation of embryogenic cell suspensions of gentian species (Gentiana lutea L., Gentiana cruciata L., and Gentiana kurroo royle) using agrobacterium tumefaciens. BioTechnologia 2019;100:5-18.

Aberham A, Pieri V, Croom EMJr, Ellmerer E, Stuppner H. Analysis of iridoids, secoiridoids and xanthones in Centaurium erythraea, Frasera caroliniensis and Gentiana lutea using LC-MS and RP-HPLC. J Pharm Biomed Anal 2011;54:517-25.

Huang SH, Vishwakarma RK, Lee TT, Chan HS, Tsay HS. Establishment of hairy root lines and analysis of iridoids and secoiridoids in the medicinal plant Gentiana scabra. Bot Stud 2014;55:17.

Xu Y, Li Y, Maffucci KG, Huang L, Zeng R. Analytical methods of phytochemicals from the genus Gentiana. Molecules 2017;22:2080.

Sezik E, Aslan M, Yesilada E, Ito S. Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques. Life Sci 2005;76:1223-38.

Chen L, Wang HB, Sun XL, Sun W. Study on the analgesic and anti-inflammatory activities of gentiopicroside. NPRD 2008;20:903-6.

Wani BA, Ramamoorthy D, Rather MA, Arumugam N, Qazi AK, Majeed R, et al. Induction of apoptosis in human pancreatic MiaPaCa-2 cells through the loss of mitochondrial membrane potential (ΔΨm) by Gentiana kurroo root extract and LC-ESI-MS analysis of its principal constituents. Phytomedicine 2013;20:723-33.

Qureshi RA, Gilani S, Ashraf M. Ethnobotanical studies with special reference to plants phenology at sudhan gali and ganga chotti hills (District Bagh, A. K.). EJEAFChe 2007;6:2207-15.

Behera M, Raina R. Gentiana kurroo royle–a critically endangered bitter herb. Int J Med Arom Plants 2012;2:22-9.

Zhao ZL, Dorje G, Wang ZT. Identification of medicinal plants used as Tibetan Traditional Medicine Jie-Ji. J Ethnopharmacol 2010;132:122-6.

Hosokawa K, Oikawa Y, Yamamura S. Mass propagation of ornamental gentian in liquid medium. Plant Cell Reports 1998;17:747-51.

Tomiczak K, Sliwinska E, Rybczynski JJ. Comparison of the morphogenic potential of five Gentiana species in leaf mesophyll protoplast culture and ploidy stability of regenerated calli and plants. PCTOC 2016;126:319-31.

Mihailovic V, Katanic J, Misic D, Stankovic V, Mihailovic M, Uskokovic A, et al. Hepatoprotective effects of secoiridoid-rich extracts from Gentiana cruciata L. against carbon tetrachloride induced liver damage in rats. Food Function 2014;5:1795-803.

Szucs Z, Danos B, Nyiredy Sz. Comparative analysis of the under-ground parts of Gentiana species by HPLC with diode-array and mass spectrometric detection. Chromatographia 2002;56:S19-23.

Mihailovic V, Misic D, Matic SD, Mihailovic M, Stanic S, Vrvic M, et al. Comparative phytochemical analysis of Gentiana cruciata L. roots and aerial parts, and their biological activities. Industrial Crops Products 2015;73:49-62.

Tomiczak K. Molecular and cytogenetic description of somatic hybrids between Gentiana cruciata L. and G. tibetica king. J Appl Genetics 2020;61:13-24.

Huang S, Vishwakarma R, Lee T, Chan H, Tsay H. Establishment of hairy root lines and analysis of iridoids and secoiridoids in the medicinal plant Gentiana scabra. Bot Stud 2014;55:17.

Olennikov DN, Gadimli AI, Isaev JI, Kashchenko NI, Prokopyev AS, Kataeva TN, et al. Caucasian Gentiana species: untargeted LC-MS metabolic profiling, antioxidant and digestive enzyme inhibiting activity of six plants. Metabolites 2019;9:271.

Ando H, Hirai Y, Fujii M, Hori Y, Fukumura M, Niiho Y, et al. The chemical constituents of fresh Gentian root. J Nat Med 2007;61:269-79.

Hayta S, Gurel A, Akgun I, Altan F, Ganzera M, Tanyolac B, et al. Induction of Gentiana cruciata hairy roots and their secondary metabolites. Biologia 2011;66:618-25.

Senol FS, Tuzun CY, Toker G, Orhan IE. An in vitro perspective to cholinesterase inhibitory and antioxidant activity of five Gentiana species and Gentianella caucasea. Int J Food Sci Nutr 2012;63:802-12.

Pan Y, Zhao YL, Zhang J, Li WY, Wang YZ. Phytochemistry and pharmacological activities of the genus Gentiana (Gentianaceae). Chem Biodiversity 2016;13:107-50.

Stoiko L, Kurylo K. Development of optimal technology of alcohol extract Centaurium erythraea Rafn. herb. Arch Balk Med Union 2018;53:523-8.

Husak L, Dakhym I, Marchyshyn S, Nakonechna S. Determination of sugars and fructans content in Stachys sieboldii. Int J Green Pharm 2018;12:70-4.

Stoiko L, Dakhym I, Pokotylo O, Marchyshyn S. Polysaccharides in Centaurium erythraea rafn. IJRAP 2017;2:252-5.

Slobodianiuk L, Budniak L, Marchyshyn S, Basaraba R. Determination of amino acids and sugars content in Antennaria dioica gaertn. IJAP 2019;11:39-43.

Chen Y, Xie MY, Wang YX, Nie SP, Li C. Analysis of the monosaccharide composition of purified polysaccharides in Ganoderma atrum by capillary gas chromatography. Phytochem Anal 2009;20:503-10.

Marchyshyn SM, Kudria VV, Dakhym IS, Zarichanska OV. Research of carbohydrates from great burnet (Sanguisorba officinalis L.) rhizomes with roots and herb. Med Clin Chem 2018;1:93-9.

Vijn I, Smeekens S. Fructan: more than a reserve carbohydrate? Plant Physiol 1999;120:351‐60.

Khowala S, Verma D, Banik SP. Carbohydrates. In: Kankara M, Sharma NC, Sharma PC, Somani BL, Misra PC. editors. Biomolecules (Introduction, Structure and Functions). 6th ed. India: National Science Digital Library; 2008. p. 1-93.

Van der Kooij M. The impact of chronic stress on energy metabolism. Mol Cellular Neurosci 2020;107:103525.

Hayes AJ, Melrose J. Glycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. Biochem J 2018;475:2511-45.

Sun FH, Cooper SB, Gui Z. Effects of carbohydrate and protein co-ingestion during short-term moderate-intensity exercise on cognitive function. J Sports Med Phys Fitness 2020;60:656-63.

Navarro D, Abelilla JJ, Stein HH. Structures and characteristics of carbohydrates in diets fed to pigs: a review. J Animal Sci Biotechnol 2019;10:39.

Christou C, Poulli E, Yiannopoulos S, Agapiou A. GC-MS analysis of D-pinitol in carob: syrup and fruit (flesh and seed). J Chromatogr B: Anal Technol Biomed Life Sci 2019;1116:60-4.

Sanchez Hidalgo M, Leon Gonzalez AJ, Galvez Peralta M, Gonzalez Mauraza NH, Martin Cordero C. D-Pinitol: a cyclitol with versatile biological and pharmacological activities. Phytochem Rev 2020. DOI:10.1007/s11101-020-09677-6

Owczarczyk Saczonek A, Lahuta LB, Ligor M, Placek W, Gorecki RJ, Buszewski B. The healing-promoting properties of selected cyclitols-a review. Nutrients 2018;10:1891.

Tadele S, Girmay S. Quantification of bioactive constituent D-Pinitol in ethiopian soybean. Nat Prod Chem Res 2018;6:1-4.

Lopez Sanchez J, Moreno D, Garcia Viguera C. D-pinitol, a highly valuable product from carob pods: Health-promoting effects and metabolic pathways of this natural super-food ingredient and its derivatives. AIMS Agric Food 2018;3:41-63.

Yoon HS, Kim CH, Kim TJ, Keum I, Han NS. Novel functional sugar L-arabinose: its functionality, uses and production methods. Korean J Food Sci Technol 2003;35:757-63.

Umbayev B, Askarova S, Almabayeva A, Saliev T, Masoud AR, Bulanin D. Galactose-induced skin aging: the role of oxidative stress. Oxidative Med Cell Longev 2020;1-15. https://doi.org/10.1155/2020/7145656.

Chogtu B, Arivazhahan A, Kunder SK, Tilak A, Sori R, Tripathy A. Evaluation of acute and chronic effects of D-Galactose on memory and learning in wistar rats. Clin Psychopharmacol Neurosci 2018;16:153-60.

Pfutzner A, Demircik F, Sachsenheimer D, Spatz J, Pfutzner AH, Ramljak S. Impact of xylose on glucose-dehydrogenase-based blood glucose meters for patient self-testing. J Diabetes Sci Technol 2017;11:577-83.

Published

07-01-2021

How to Cite

BUDNIAK, L., SLOBODIANIUK, L., MARCHYSHYN, S., KLEPACH, P., & HONCHARUK, Y. (2021). DETERMINATION OF CARBOHYDRATES CONTENT IN GENTIANA CRUCIATA L. BY GC/MS METHOD. International Journal of Applied Pharmaceutics, 13(1), 124–128. https://doi.org/10.22159/ijap.2021v13i1.39820

Issue

Section

Original Article(s)