PHYTOCHEMICAL ANALYSIS OF CALLUS TWO VARIETIES ORTHOSIPHON ARISTATUS (BLUME) MIQ ON MURASHIGE AND SKOOG MEDIA: A STRATEGIC STEP OF SECONDARY METABOLITE PRODUCTION

Authors

  • FAHRAUK FARAMAYUDA School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, West Java, Indonesia, 40132, Faculty of Pharmacy Universitas Jenderal Achmad Yani (UNJANI), Cimahi, West Java, Indonesia, 40532
  • TOTIK SRI MARIANI School of Life Sciences and Technology, Institut Teknologi Bandung (ITB), Bandung, West Java, Indonesia, 40132
  • ELFAHMI School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, West Java, Indonesia, 40132, Biosciences and Biotechnology Research Center, Institut Teknologi Bandung (ITB), Bandung, West Java, Indonesia, 40132
  • SUKRASNO School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, West Java, Indonesia, 40132

DOI:

https://doi.org/10.22159/ijap.2021.v13s2.14

Keywords:

Purple variety O aristatus,, White-purple variety O aristatus, Modification of in vitro culture, Growth media, Phytochemical profiling of callus

Abstract

Objective: The research aimed to provide new information regarding the secondary metabolites content of purple and white-purple Orthosiphon aristatus (Blume) Miq. callus, which can then be used as a basis for developing towards cell suspension and ultimately producing secondary metabolites using bioreactors.

Methods: Callus induction of two varieties of O. aristatus were performed by inoculating sterile leaf explants grown on Murashige and Skoog basal media supplemented with 2,4-dichlorophenoxyacetis acid 0.4 ppm. The secondary metabolites were analysed and quantified using high-performance liquid chromatography with gradient elution.

Results: The results showed the growth of callus two varieties of O. aristatus in growth media MS with 2,4-D 0.4 ppm. Rosmarinic acid content in the acetone extract of the purple variety callus was 1.28% w/w, and the white-purple variety was 2.22% w/w.

Conclusion: This study could form the basis for the development of rosmarinic acid production by In vitro culture modification.

Downloads

Download data is not yet available.

References

1. Hossain MA, Mizanur Rahman SM. Isolation and characterisation of flavonoids from the leaves of medicinal plant Orthosiphon stamineus. Arabian J Chem 2015;8:218–21.
2. Febjislami SA., Kurniawati, Melati M, Wahyu Y. Morphological characters, flowering and seed germination of the Indonesian medicinal plant Orthosiphon aristatus. Biodiversitas 2019;20:328–37.
3. Ameer OZ, Salman IM, Asmawi M, Ibraheem ZO, Yam MF. Orthosiphon stamineus: traditional uses, phytochemistry, pharmacology, and toxicology. J Med Food 2012;15:678–90.
4. Wiart C. Medicinal plant of Southeast Asia. Bhd, Selangor, Malaysia: Pelanduk Publication Sdn; 2000.
5. Lee W. Micropropagation and cell culture of misai kucing (Orthosiphon stamineus Benth.) and detection of rosmarinic acid in the in vitro cultures, Thesis. Universiti Sains Malaysia; 2004.
6. Mohamed EAH, Siddiqui MJA, Ang LF, Sadikun A, Chan SH, Tan SC, et al. Potent ?-glucosidase and ?-amylase inhibitory activities of standardized 50% ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism. BMC Compl Alt Med 2012;12:176.
7. Wiart C. Orthosiphon stamineus, Benth. In: FK Wong. (Ed.). Medicinal plants of Southeast Asia. Selangor: Southeast Asia Prentice Hall; 2002.
8. Indubala JNL. Herbs: The green pharmacy of Malaysia. 1st ed. Kuala Lumpur: Vinpress Sdn. Bhd; 2000.
9. Beaux D, Fleurentin J, Mortier F. Effect of extracts of Orthosiphon stamineus Benth, Hieracium pilosella L., Sambucus nigra L. and Arctostaphylos uva-ursi (L.) Spreng. in rats. Phytother Res 1999;13:222–5.
10. Englert J, Harnischfeger G. Diuretic action of aqueous orthosiphon extract in rats. Planta Med 1992;58:237–8.
11. Masuda T, Masuda K, Nakatani N. Orthosiphol a, a highly oxygenated diterpene from the leaves of Orthosiphon stamineus. Tetrahedron Lett 1992;33:945–6.
12. Cai X, Xiao C, Xue H, Xiong H, Hang Y, Xu J, et al. A comparative study of the antioxidants and intestinal protective effects of extracts from different parts of Java tea (Orthosiphon stamineus). Food Sci Nutrit 2018;6:579–84.
13. Hendaryanto DPS, Wijayani A. Tissue culture techniques, introduction, and guidelines for vegetative-modern plant propagation. Yogyakarta: Kanisius; 1994.
14. Wai leng L, Lai Keng C. Establishment of Orthosiphon stamineus cell suspension culture for cell growth. Plant Cell Tissue Org Cult 2004;78:101–6.
15. Faramayuda F, Sukrasno, Elfahmi, Mariani TS. Plant tissue culture in two varieties of Orthosiphon aristatus (Blume) Miq. JOJ Hortic Arboric 2019;2:555597.
16. Saidan NH, Aisha AFA, Hamil MSR, Majid AMSA, Ismail Z. A novel reverse-phase high-performance liquid chromatography method for standardization of Orthosiphon stamineus leaf extracts. Pharmacogn Res 2015;7:23–31.
17. Lai Keng C, Poay Siong L. Morphological similarities and differences between the two varieties of cats whiskers (Orthosiphon stamineus Benth.) grown in Malaysia. Int J Bot 2006;2:1-6.
18. Almatar MZ, Rahmat, Salleh FM. Premilinary morphological and
anatomical study of Orthosiphon stamineus. Indian J Pharm Biol Res 2013;1:1-6.
19. Wójcikowska B, Gaj MD. Expression profiling of auxin response factor genes during somatic embryogenesis induction in arabidopsis. Plant Cell Rep 2017;36:843–58.
20. Nic Can GI, Loyola Vargas VM. The role of the auxins during somatic embryogenesis. In: Somatic embryogenesis: fundamental aspects and applications. Switzerland: Springer Cham; 2016. p. 171–82.
21. Kumar S, Singh R, Kalia S, Sharma SK, Kalia AK. Recent advances in understanding the role of growth regulators in plant growth and development in vitro-I. conventional growth regulators. Indian For 2016;142:459–70.
22. Seldimirova OA, Titova GE, Kruglova NN. A complex morpho-histological approach to the in vitro study of morphogenic structures in a wheat anther culture. Biol Bull Russ Acad Sci 2016:43:121–6.
23. Ali H, Karsani SA, Othman R, Yaacob JS. Production of colored callus in Orthosiphon stamineus Benth and antioxidant properties of the extracted pigments. Pigments Resin Tech 2018;47:196-207.
24. Zheng M, Konzak C. Effect of 2,4-dichlorophenoxyacetic acid on callus induction and plant regeneration in anther culture of wheat (Triticum aestivum L.). Plant Cell Reports 1999;19:69–73.
25. Phua QY, Chin CK, Asri ZRM, Lam DYA, Subramaniam S, Chew BL. The callugenic effects of 2,4-dichlorophenoxy acetic acid (2,4-d) on leaf explants of sabah snake grass (Clinacanthus nutans). Plant Cell Reports 1999;48:561–6.
26. Rathore MSN, Paliwal KGV, Anand, Agarwal PK. Somatic embryogenesis and in vitro plantlet regeneration in Salicornia brachiata roxb. Plant Cell Tiss Org Cul 2014;120:355-60.
27. Gopi C, Vatsala TM. In vitro studies on the effect of plant growth regulators on callus and suspension culture biomass yield form Gymnema sylvestre R Br. Afr J Biotechnol 2006;5:1215-9.
28. Tahir SM, Victor K, Abdulkadir S. The effect of 2, 4-dichlorophenoxy acetic acid (2,4-D) concentration on callus induction in sugarcane (Saccharum officinaru). Nig J Basic Appl Sci 2011;19:213-7.
29. Anggraeni Triantoro. The main content of Orthosiphon aristatus (Blume) Miq. leaves. In: Proceedings of the scientific communication forum. Bogor: Industrial Plant Research and Development Center; 1992.
30. Yam MF, Lim V, Salman IM, Ameer OZ, Ang LF, Rosidah N, et al. HPLC and anti-inflammatory studies of the flavonoid-rich chloroform extract fraction of Orthosiphon stamineus leaves. Molecules 2010;15:4452–66.
31. Bordbar L, Subramaniam S, Jelodar NB, Chan LK. Effects of abiotic factors on cell biomass and rosmarinic acid production in cell suspension cultures of Orthosiphon Stamineus benth. Emirates J Food Agric 2010;27:756–62.
32. Lim LF, Fei M, Zaini M, Chan L. Elicitation of Orthosiphon stamineus cell suspension culture for enhancement of phenolic compounds biosynthesis and antioxidant activity. Ind Crop Prod 2013;50:436–42.
33. Amoah SK, Sandjo LP, Kratz JM, Biavatti MW. Rosmarinic acid--pharmaceutical and clinical aspects. Planta Med 2016;82:388-406.
34. Mehta VA, Sharma P, Kailkhura, Malairaman U. Antioxidant, anti-inflammatory, and antidiabetic activity of hydroalcoholic extract of Ocimum sanctum: an in vitro and in silico study. Asian J Pharm Clin Res 2016;5:44-9.
35. Smita K. Evaluation of ?-glucosidase inhibitory potential of methanolic leaf extract of ocimum canum. Int J Pharm Pharm Sci 2018;1:126-30.

Published

10-02-2021

How to Cite

FARAMAYUDA, F., MARIANI, T. S., ELFAHMI, & SUKRASNO. (2021). PHYTOCHEMICAL ANALYSIS OF CALLUS TWO VARIETIES ORTHOSIPHON ARISTATUS (BLUME) MIQ ON MURASHIGE AND SKOOG MEDIA: A STRATEGIC STEP OF SECONDARY METABOLITE PRODUCTION. International Journal of Applied Pharmaceutics, 13(2), 71–77. https://doi.org/10.22159/ijap.2021.v13s2.14

Issue

Section

Original Article(s)