MODERN INSTRUMENTAL METHODS FOR QUALITATIVE AND QUANTITATIVE ANALYSIS OF LAPATINIB IN BIOLOGICAL FLUIDS AND DOSAGE FORMS (REVIEW)

Authors

  • ZOYA S. SHPRAKH N. N. Blokhin National Medical Research Center of Oncology (N. N. Blokhin NMRCO), 24 Kashirskoye sh., Moscow, 115478, Russia, I. M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya st., Moscow, 119991, Russia https://orcid.org/0000-0003-3034-750X
  • YANA A. POSKEDOVA I. M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya st., Moscow, 119991, Russia https://orcid.org/0000-0001-7921-6354
  • GALINA V. RAMENSKAYA I. M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya st., Moscow, 119991, Russia

DOI:

https://doi.org/10.22159/ijap.2022v14i1.42992

Keywords:

Lapatinib, HPLC, Fluorimetry, Validation, Simultaneous determination, Pharmacokinetics

Abstract

Lapatinib is a small molecule, a heterocyclic quinazoline derivative. The drug is used for targeted therapy of patients with breast cancer, in which there is overexpression of the human epidermal growth factor receptors (HER/ErbB). This review is devoted to studying modern instrumental methods of qualitative and quantitative analysis of lapatinib, which can be used both for quality control and standardization (of bulk pharmaceuticals and dosage forms) and pharmacokinetics studies of a drug. Reverse-phase high-performance liquid chromatography (RP-HPLC) is mainly used to identify lapatinib in tablets. Depending on the purpose of the study, various detectors are used (ultraviolet or diode-matrix detector), which makes it possible to determine not only the native compound but also the products of its degradation. Definition of lapatinib in the presence of degraded products is necessary for forced degradation studies to determine drug stability. When a drug is being developed, it is important to define and understand its pharmacokinetics. For such studies, high-performance liquid chromatography (HPLC) coupled with the mass selective detector is often used. It allows determining lapatinib in biological fluids. However, these methods are not applicable for identifying the drug directly in dosage forms and require further development and validation.

Downloads

Download data is not yet available.

References

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Erratum: CA Cancer J Clin. 2020 Jul;70(4):313, PMID 30207593.

Xuhong JC, Qi XW, Zhang Y, Jiang J. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am J Cancer Res. 2019 Oct 1;9(10):2103-19. PMID 31720077, PMCID PMC6834479.

Dange VN, Shid SJ, Magdum CS, Mohite SK. A review on breast cancer: an overview. Asian J Pharm Res. 2017;7(1):3. doi: 10.5958/2231-5691.2017.00008.9.

Oh DY, Bang YJ. HER2-targeted therapies - a role beyond breast cancer. Nat Rev Clin Oncol. 2020 Jan;17(1):33-48. doi: 10.1038/s41571-019-0268-3. PMID 31548601.

O’Sullivan CC, Davarpanah NN, Abraham J, Bates SE. Current challenges in the management of breast cancer brain metastases. Semin Oncol. 2017 Apr;44(2):85-100. doi: 10.1053/j.seminoncol.2017.06.006. PMID 28923217.

Holla SN, Nayak V, Laxminarayan Bairy K, Tripathy A, Shreedhar Holla N. Her-2 gene, receptors and drug target: a systematic review. Int J Pharm Pharm Sci. 2016 Jan;8(4):6.

European Medicines Agency. Assessment report for Tyverb; 2008. p. 58.

Gril B, Palmieri D, Bronder JL, Herring JM, Vega Valle E, Feigenbaum L, Liewehr DJ, Steinberg SM, Merino MJ, Rubin SD, Steeg PS. Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J Natl Cancer Inst. 2008 Aug 6;100(15):1092-103. doi: 10.1093/jnci/djn216. PMID 18664652, PMCID PMC2575427.

Konecny GE, Pegram MD, Venkatesan N, Finn R, Yang G, Rahmeh M, Untch M, Rusnak DW, Spehar G, Mullin RJ, Keith BR, Gilmer TM, Berger M, Podratz KC, Slamon DJ. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 2006 Feb 1;66(3):1630-9. doi: 10.1158/0008-5472.CAN-05-1182. PMID 16452222.

Shrivastava R, Trivedi S, Singh PK, Asif M, Chourasia MK, Khanna A, Bhadauria S. Design and development of pegylated liposomal formulation of HER2 blocker Lapatinib for enhanced anticancer activity and diminished cardiotoxicity. Biochem Biophys Res Commun. 2018 Sep 5;503(2):677-83. doi: 10.1016/j.bbrc.2018.06.060. PMID 29908185.

Yang Z, Shao D, Zhou G. Dissolution behavior and thermodynamic properties of lapatinib ditosylate in pure and mixed organic solvents from T = (283.15-323.15) K. Fluid Phase Equilib. 2019 May;486:91-7. doi: 10.1016/j.fluid.2019.01.005.

Open database: the Human metabolome Database (HMDB); c2012. Available from: https://hmdb.ca/metabolites/HMDB0015388. [Last accessed on 10 Nov 2020].

Morikawa A, Peereboom DM, Thorsheim HR, Samala R, Balyan R, Murphy CG, Lockman PR, Simmons A, Weil RJ, Tabar V, Steeg PS, Smith QR, Seidman AD. Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study. Neurooncol. 2015 Feb;17(2):289-95. doi: 10.1093/neuonc/nou141. Erratum in: Oncol N. PMID: 25015089; PMC ID: PMC4288517. 2015 Oct;17(10):1423.

Toth G, Janoska A, Volgyi G, Szabo Z, Orgovan G, Mirzahosseini A, Noszal B. Physicochemical characterization and cyclodextrin complexation of the anticancer drug lapatinib. J Chem. 2017 Mar;2017:1-9. doi: 10.1155/2017/4537632.

Stuurman FE, Nuijen B, Beijnen JH, Schellens JH. Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement. Clin Pharmacokinet. 2013 Jun;52(6):399-414. doi: 10.1007/s40262-013-0040-2, PMID 23420518.

Wan X, Zheng X, Pang X, Zhang Z, Zhang Q. Incorporation of lapatinib into human serum albumin nanoparticles with enhanced anti-tumor effects in HER2-positive breast cancer. Colloids Surf B Biointerfaces. 2015 Dec 1;136:817-27. doi: 10.1016/j.colsurfb.2015.10.018. PMID 26539808.

Bouchet S, Chauzit E, Ducint D, Castaing N, Canal-Raffin M, Moore N, Titier K, Molimard M. Simultaneous determination of nine tyrosine kinase inhibitors by 96-well solid-phase extraction and ultra-performance LC/MS-MS. Clin Chim Acta. 2011 May 12;412(11-12):1060-7. doi: 10.1016/j.cca.2011. 02.023. PMID 21345336.

Ni MW, Zhou J, Li H, Chen W, Mou HZ, Zheng ZG. Simultaneous determination of six tyrosine kinase inhibitors in human plasma using HPLC-Q-Orbitrap mass spectrometry. Bioanalysis. 2017 Jun;9(12):925-35. doi: 10.4155/bio-2017-0031. PMID 28617069.

Merienne C, Rousset M, Ducint D, Castaing N, Titier K, Molimard M, Bouchet S. High throughput routine determination of 17 tyrosine kinase inhibitors by LC-MS/MS. J Pharm Biomed Anal. 2018 Feb 20;150:112-20. doi: 10.1016/j.jpba.2017.11.060. PMID 29220734.

Zardavas D, Fouad TM, Piccart M. Optimal adjuvant treatment for patients with HER2-positive breast cancer in 2015. Breast. 2015 Nov;24Suppl 2:S143-8. doi: 10.1016/ j.breast.2015.07.034, PMID 26255196.

Inoue K, Kuroi K, Shimizu S, Rai Y, Aogi K, Masuda N, Nakayama T, Iwata H, Nishimura Y, Armour A, Sasaki Y. Safety, pharmacokinetics and efficacy findings in an open-label, single-arm study of weekly paclitaxel plus lapatinib as first-line therapy for Japanese women with HER2-positive metastatic breast cancer. Int J Clin Oncol. 2015 Dec;20(6):1102-9. doi: 10.1007/s10147-015-0832-5. PMID 25967286, PMCID PMC4666271.

Schrader C, Boehm A, Reiche A, Dietz A, Mozet C, Wichmann G. Combined effects of lapatinib and cisplatin on colony formation of head and neck squamous cell carcinoma. Anticancer Res. 2012 Aug;32(8):3191-9. PMID 22843892.

McDermott M, Eustace AJ, Busschots S, Breen L, Crown J, Clynes M, O’Donovan N, Stordal B. In vitro development of chemotherapy and targeted therapy drug-resistant cancer cell lines: a practical guide with case studies. Front Oncol. 2014 Mar 6;4:40. doi: 10.3389/fonc.2014.00040, PMID 24639951, PMCID PMC3944788.

Umehara H, Maekawa Y, Koizumi F, Shimizu M, Ota T, Fouad TM, Willey J, Kaito H, Shiraishi N, Nakashima D, Akinaga S, Ueno NT. Preclinical and phase I clinical studies of KW-2450, a dual IGF-1R/IR tyrosine kinase inhibitor, in combination with lapatinib and letrozole. Ther Adv Med Oncol. 2018 Jul 30;10:1758835918786858. doi: 10.1177/1758835918786858, PMID 30083253, PMCID PMC6066809.

Cizkova M, Bouchalova K, Friedecky D, Polynkova A, Janostakova A, Radova L, Cwiertka K, Trojanec R, Zezulova M, Zlevorova M, Hajduch M, Melichar B. High lapatinib plasma levels in breast cancer patients: risk or benefit? Tumori. 2012 Jan–Feb;98(1):162-5. doi: 10.1700/1053.11516, PMID 22495718.

Kumar KK, Nagoji KE, Nadh RV. A validated RP-HPLC method for the estimation of lapatinib in tablet dosage form using gemcitabine hydrochloride as an internal standard. Indian J Pharm Sci. 2012 Nov;74(6):580-3. doi: 10.4103/0250-474X.110621, PMID 23798787, PMCID PMC3687931.

Ivaturi R, Sastry MT, Satyaveni S. Development and validation of stability-indicating HPLC method for the determination of lapatinib impurities in bulk and finished formulations. Int J Pharm Sci Res. 2017 Jul;8:3081-91. doi: 10.13040/IJPSR.0975-8232.8(7).3081-91.

Saadat E, Dehghan Kelishady P, Ravar F, Kobarfard F, Dorkoosh FA. Development and validation of rapid stability-indicating RP-HPLC-DAD method for the quantification of lapatinib and mass spectrometry analysis of degraded products. J Chromatogr Sci. 2015 Jul;53(6):932-9. doi: 10.1093/chromsci/ bmu150. PMID 25491314.

Götze L, Hegele A, Metzelder SK, Renz H, Nockher WA. Development and clinical application of a LC-MS/MS method for simultaneous determination of various tyrosine kinase inhibitors in human plasma. Clin Chim Acta. 2012 Jan 18;413(1-2):143-9. doi: 10.1016/j.cca.2011.09.012. PMID 21945732.

Couchman L, Birch M, Ireland R, Corrigan A, Wickramasinghe S, Josephs D, Spicer J, Flanagan RJ. An automated method for the measurement of a range of tyrosine kinase inhibitors in human plasma or serum using turbulent flow liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2012 Jun;403(6):1685-95. doi: 10.1007/s00216-012-5970-2. PMID 22526649.

Guo XF, Li SS, Zhu XF, Dou QH, Liu D. Lapatinib in combination with paclitaxel plays synergistic antitumor effects on esophageal squamous cancer. Cancer Chemother Pharmacol. 2018 Sep;82(3):383-94. doi: 10.1007/s00280-018-3627-3. PMID 29909520.

Patel TA, Ensor JE, Creamer SL, Boone T, Rodriguez AA, Niravath PA, Darcourt JG, Meisel JL, Li X, Zhao J, Kuhn JG, Rosato RR, Qian W, Belcheva A, Schwartz MR, Kaklamani VG, Chang JC. A randomized, controlled phase II trial of neoadjuvant ado-trastuzumab emtansine, lapatinib, and nab-paclitaxel versus trastuzumab, pertuzumab, and paclitaxel in HER2-positive breast cancer (TEAL study). Breast Cancer Res. 2019 Sep 2;21(1):100. doi: 10.1186/s13058-019-1186-0, PMID 31477168, PMCID PMC6720931.

Saadat E, Ravar F, Dehghankelishadi P, Dorkoosh FA. Development and validation of a rapid RP-HPLC-DAD analysis method for the simultaneous quantitation of paclitaxel and lapatinib in a polymeric micelle formulation. Sci Pharm. 2016 Apr–Jun;84(2):333-45. doi: 10.3797/scipharm.1507-03. PMID 27222608, PMCID PMC4871185.

Biswal S, Mondal S. Analytical method validation report for assay of lapatinib by UPLC. Pharm Methods. 2019 Apr;10(1):09-14. doi: 10.5530/phm.2019.1.2.

Darwish HW, Bakheit AH, Al-Shakliah NS, Rahman AFMM, Darwish IA. Experimental and computational evaluation of kolliphor RH 40 as a new fluorescence enhancer in the development of a micellar-based spectrofluorimetric method for determination of lapatinib in tablets and urine. PLOS ONE. 2020 Dec 3;15(12):e0239918. doi: 10.1371/journal.pone.0239918. PMID 33270656, PMCID PMC7714224.

Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and protein S using MALDI-TOF MS. Anal Chem. 1997 Dec 1;69(23):4751-60. doi: 10.1021/ac970888i, PMID 9406525.

Andriamanana I, Gana I, Duretz B, Hulin A. Simultaneous analysis of anticancer agents bortezomib, imatinib, nilotinib, dasatinib, erlotinib, lapatinib, sorafenib, sunitinib and vandetanib in human plasma using LC/MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2013 May 1;926:83-91. doi: 10.1016/j.jchromb.2013.01.037. PMID 23562906.

Lankheet NAG, Hillebrand MJX, Rosing H, Schellens JHM, Beijnen JH, Huitema ADR. Method development and validation for the quantification of dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, sorafenib and sunitinib in human plasma by liquid chromatography coupled with tandem mass spectrometry. Biomed Chromatogr. 2013 Apr;27(4):466-76. doi: 10.1002/bmc.2814. PMID 22987603.

Micova K, Friedecky D, Faber E, Adam T. Isotope dilution direct injection mass spectrometry method for determination of four tyrosine kinase inhibitors in human plasma. Talanta. 2012 May 15;93:307-13. doi: 10.1016/j.talanta.2012.02.038, PMID 22483915.

Musijowski J, Filist M, Rudzki PJ. Sensitive single quadrupole LC/MS method for determination of lapatinib in human plasma. Acta Pol Pharm. 2014 Nov–Dec;71(6):1029-36. PMID 25745775.

Ganetsky M, Böhlke M, Pereira L, Williams D, LeDuc B, Guatam S, Salhanick SD. Effect of excipients on acetaminophen metabolism and its implications for prevention of liver injury. J Clin Pharmacol. 2013 Apr;53(4):413-20. doi: 10.1002/jcph.24. PMID 23436315, PMCID PMC4383763.

Lancaster EM, Hiatt JR, Zarrinpar A. Acetaminophen hepatotoxicity: an updated review. Arch Toxicol. 2015 Feb;89(2):193-9. doi: 10.1007/s00204-014-1432-2. PMID 25537186.

Karbownik A, Szałek E, Sobanska K, Grabowski T, Klupczynska A, Plewa S, Wolc A, Magiera M, Porażka J, Kokot ZJ, Grzeskowiak E. The concomitant use of lapatinib and paracetamol- the risk of interaction. Invest New Drugs. 2018 Oct;36(5):819-27. doi: 10.1007/s10637-018-0573-1. PMID 29464465, PMCID PMC6153549.

Polli JW, Humphreys JE, Harmon KA, Castellino S, O’Mara MJ, Olson KL, John-Williams LSt, Koch KM, Serabjit-Singh CJ. The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metab Dispos. 2008 Apr;36(4):695-701. doi: 10.1124/dmd.107.018374. PMID 18216274.

Karbownik A, Porażka J, Łuczak A, Teżyk A, Grabowski T, Wolc A, Grześkowiak E, Szałek E. Pharmacokinetic interaction after oral coadministration of clarithromycin and the tyrosine kinase inhibitor lapatinib in rats. Acta Poloniae Pharmaceutica- Drug Research. 2019 Aug;76(4):645-51. doi: 10.32383/appdr/104370.

Langer O, Müller M. Methods to assess tissue-specific distribution and metabolism of drugs. Curr Drug Metab. 2004 Dec;5(6):463-81. doi: 10.2174/1389200043335379, PMID 15578942.

Jespersen S, Niessen WMA, Tjaden UR, van der Greef J, Litborn E, Lindberg U, Roeraade J, Hillenkamp F. Attomole detection of proteins by matrix-assisted laser desorption/ionization mass spectrometry with the use of picolitre vials. Rapid Commun Mass Spectrom. 1994;8:581–4.

Barry JA, Groseclose MR, Robichaud G, Castellino S, Muddiman DC. Assessing drug and metabolite detection in liver tissue by UV-MALDI and IR-MALDESI mass spectrometry imaging coupled to FT-ICR MS. Int J Mass Spectrom. 2015 Feb 1;377:448-55. doi: 10.1016/j.ijms.2014.05.012. PMID 26056514, PMCID PMC4456684.

Khan H. Analytical method development in pharmaceutical research: steps involved in HPLC method development. Asian J Pharm Res. 2017;7(3):203-7. doi: 10.5958/2231-5691. 2017. 00031.4.

Published

07-01-2022

How to Cite

SHPRAKH, Z. S., POSKEDOVA, Y. A., & RAMENSKAYA, G. V. (2022). MODERN INSTRUMENTAL METHODS FOR QUALITATIVE AND QUANTITATIVE ANALYSIS OF LAPATINIB IN BIOLOGICAL FLUIDS AND DOSAGE FORMS (REVIEW). International Journal of Applied Pharmaceutics, 14(1), 7–12. https://doi.org/10.22159/ijap.2022v14i1.42992

Issue

Section

Review Article(s)