DESIGN, 23 FACTORIAL OPTIMIZATION AND IN VITRO–IN VIVO PHARMACOKINETIC EVALUATION OF ROSUVASTATIN CALCIUM LOADED POLYMERIC NANOPARTICLES

Authors

  • SIVA PARAMESWARAN Department of Pharmaceutics, Vinayaka Mission’s College of Pharmacy, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem 636308, Tamil Nadu, India, Department of Pharmaceutics, Grace College of Pharmacy, Palakkad 678004, Kerala, India https://orcid.org/0000-0002-1640-4283
  • GUDANAGARAM RAMAMOORTHY VIJAYASHANKAR Department of Pharmaceutics, Vinayaka Mission’s College of Pharmacy, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem 636308, Tamil Nadu, India
  • BENDI SRI VENKATESWARLU Department of Pharmaceutics, Vinayaka Mission’s College of Pharmacy, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem 636308, Tamil Nadu, India
  • RAJAPPA MARGRET CHANDIRA Department of Pharmaceutics, Vinayaka Mission’s College of Pharmacy, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem 636308, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijap.2022v14i2.43459

Keywords:

Rosuvastatin Calcium, Polymeric nanoparticle, Bioavailability, Pharmacokinetic

Abstract

Objective: The objective is to incorporate low bioavailable Rosuvastatin Calcium (20%) into polymeric nanoparticles (PNs) to improve its biopharmaceutical properties of Rosuvastatin Calcium.

Methods: The PNs were prepared by solvent evaporation method by applying 23 factorial designs. The formulated PN are investigated for particle size (PS) and shape, zeta potential (ZP), polydispersity index (PI) and entrapment efficiency (EE), in vivo pharmacokinetic.

Results: Among 8 formulations, PN7 shows least PS of 159.9±16.1 nm, which enhance the dissolution, surface area and permeability; ZP of-33.5±1.54 mV, which shows good stability; PI of 0.587±0.16 shows monodisperse distribution pattern; high EE of about 94.20±2.46 %; percentage yield of 96.80±2.08 %; maximum in vitro drug release of about 96.54±2.02 % at 24 h with controlled and predetermined release pattern. PN7 drug release obeys zero-order release kinetics, non-fickian diffusion mechanism with r2 value>0.96 and release exponent ‘n’ value falls between 0.5-0.8 for peppas kinetic model i.e., the mechanism of drug diffusion is based on polymer relaxation. In vivo pharmacokinetic studies illustrate enhance in AUCo-α in mg/ml, which proves a significant enhancement of bioavailability of Rosuvastatin Calcium by PNs.

Conclusion: This PN shows a significant enhancement of bioavailability by minimizing the dose-dependent adverse side effects of rosuvastatin calcium.

Downloads

Download data is not yet available.

References

Crucho Carina IC, Barros Maria Teresa. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater Sci Eng C. 2017;80:771-84. doi: 10.1016/j.msec.2017.06.004.

El-Say Khalid M, El-Sawy Hossam S. Polymeric nanoparticles: a promising platform for drug delivery. Int J Pharm. 2017;528(1-2):675-91. doi: 10.1016/j.ijpharm.2017.06.052, PMID 28629982.

Kadian R. Nanoparticles: A promising drug delivery approach. Asian J Pharm Clin Res. 2018;11(1):30-5. doi: 10.22159/ajpcr.2017.v11i1.22035.

Yadhav KS, Nagavarma BVN, Hemant. Different techniques for preparation of polymeric nanoparticles. Asian J Pharm Clin Res. 2012;5:16-23.

Nska Aleksandra Zieli, Carreiro Filipa, Oliveira Ana M. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25:1-20.

Bisht Savita. Polymeric nanoparticles-encapsulated curcumin (nanocurcumin): a novel strategy for human cancer therapy. J Nanobiotechnology. 2007;5:1-18.

Rajput Namita. Method of preparation of nanoparticles. IJAET. 2015;7:1806-11.

Douglas D. Pharmaceutical nanotechnology: a therapeutic revolution. Int J Pharm Sci Dev Res. 2020;6(1):9-11. doi: 10.17352/ijpsdr.000027.

Pal Sovan Lal. Nanoparticles: an overview of preparation and characterization. J Appl Pharm Sci. 2011;1:228-34.

Lee Jonghwi, Chung Hesson. Methods of preparation of drug nanoparticles. Wiley online library; 2007. p. 14-9.

Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9(6):385-406. PMID 26339255.

Owens Donald E, Peppas Nicholas A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93-102. doi: 10.1016/j.ijpharm.2005.10.010, PMID 16303268.

Gudikandula Krishna, Charya Maringanti S. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J Exp Nanosci. 2016;11(9):714-21. doi: 10.1080/17458080.2016.1139196.

Schmidt Helmut. Nanoparticles by chemical synthesis, processing to materials and innovative applications. Appl Organometal Chem. 2001;15(5):331-43. doi: 10.1002/aoc.169.

You Xinru, Kang Yang, Hollett Geoffrey, Chen Xing, Zhao Wei, Gu Zhipeng, Wu Jun. Polymeric nanoparticles for colon cancer therapy: overview and perspectives. J Mater Chem B. 2016;4(48):7779-92. doi: 10.1039/c6tb01925k. PMID 32263770.

Norouzi Banis H. Synthesis of silicide nanomaterials using chemical vapour deposition method. E Theses Dissertations. 2012;767:50-66.

Xia W, Su D, Birkner A, Ruppel L, Wang Y, Wöll C, Qian J, Liang C, Marginean G, Brandl W, Muhler M. Chemical vapor deposition and synthesis on carbon nanofibers: sintering of ferrocene-derived supported iron nanoparticles and the catalytic growth of secondary carbon nanofibers. Chem Mater. 2005;17(23):5737-42. doi: 10.1021/cm051623k.

Hussain M, Sarma A, Rahman SS, Siddique AM, Eeswari TP. Formulation and evaluation of ethambutol polymeric nanoparticles. Int J App Pharm. 2020;12:207-17. doi: 10.22159/ijap.2020v12i4.36845.

Elbaz Nancy M. Core-shell silver polymeric nanoparticles-based combinational therapy against Breast cancer in vitro. Sci Rep 2016;6:1-9.

Shibata Annemarie, McMullen Emily, Pham Alex, Belshan Michael, Sanford Bridget, Zhou You, Goede Michael, Date Abhijit A, Destache Christopher J. Polymeric nanoparticles containing combination antiretroviral drugs for HIV type 1 treatment. AIDS Res Hum Retroviruses. 2013;29(5):746-54. doi: 10.1089/aid.2012.0301, PMID 23289671.

Parveen Suphiya, Sahoo Sanjeeb K. Polymeric nanoparticles for cancer therapy. J Drug Target. 2008;16(2):108-23. doi: 10.1080/10611860701794353, PMID 18274932.

Khalid M. Polymeric nanoparticles: a promising platform for drug delivery. Int J Pharm. 2017;7:675-91.

Gajra Balaram, Patel Ravi R, Dalwadi Chintan. Formulation, optimization and characterization of cationic polymeric nanoparticles of mast cell stabilizing agent using the box-behnken experimental design. Drug Dev Ind Pharm. 2016;42(5):747-57. doi: 10.3109/03639045.2015.1093496, PMID 26559522.

Dustgania Amir, Farahania Ebrahim Vasheghani, Imanib Mohammad. Preparation of chitosan nanoparticles loaded by dexamethasone sodium phosphate. Iran J Pharm Sci. 2008;4:111-4.

Zhang Zhiping, Lee Sie Huey, Gan Chee Wee, Feng Si-Shen. In vitro and in vivo investigation on PLA–TPGS nanoparticles for controlled and sustained small molecule chemotherapy. Pharm Res. 2008;25(8):1925-35. doi: 10.1007/s11095-008-9611-6, PMID 18509603.

Gabr Mai Mahmoud, Mortada Sana Mohamed, Sallam Marwa Ahmed. Hexagonal liquid crystalline nanodispersions proven superiority for enhanced oral delivery of rosuvastatin: In vitro characterization and in vivo pharmacokinetic study. J Pharm Sci. 2017;106(10):3103-12. doi: 10.1016/j.xphs.2017.04.060, PMID 28479357.

Cooper Kelvin J, Martin Paul D, Dane Aaron L, Warwick Mike J, Schneck Dennis W, Cantarini Mireille V. Effect of itraconazole on the pharmacokinetics of rosuvastatin. Clin Pharmacol Ther. 2003;73(4):322-9. doi: 10.1016/s0009-9236(02)17633-8, PMID 12709722.

Kanukula Raju, Salam Abdul, Rodgers Anthony, Kamel Bishoy. Pharmacokinetics of rosuvastatin: A systematic review of randomised controlled trials in healthy adults. Clin Pharmacokinet. 2021;60(2):165-75. doi: 10.1007/s40262-020-00978-9, PMID 33428168.

Souto EB, Wissing SA, Barbosa CM, Muller RH, Soutoab SA, Wissinga CM Barbosab, RH Muller. Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur J Pharm Biopharm. 2004;58(1):83-90. doi: 10.1016/j.ejpb.2004.02.015, PMID 15207541.

Makoni Pedzisai A, Wa Kasongo Kasongo, Walker Roderick B. Short-term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Pharmaceutics. 2019;11(8):397. doi: 10.3390/pharmaceutics11080397, PMID 31398820.

Published

07-03-2022

How to Cite

PARAMESWARAN, S., RAMAMOORTHY VIJAYASHANKAR, G., VENKATESWARLU, B. S., & CHANDIRA, R. M. (2022). DESIGN, 23 FACTORIAL OPTIMIZATION AND IN VITRO–IN VIVO PHARMACOKINETIC EVALUATION OF ROSUVASTATIN CALCIUM LOADED POLYMERIC NANOPARTICLES. International Journal of Applied Pharmaceutics, 14(2), 200–205. https://doi.org/10.22159/ijap.2022v14i2.43459

Issue

Section

Original Article(s)