DEVELOPMENT AND CHARACTERIZATION OF PEGYLATED CAPECITABINE LIPOSOMAL FORMULATIONS WITH ANTICANCER ACTIVITY TOWARDS COLON CANCER

Authors

  • M. PADMASREE Department of Pharmaceutics, Aditya Bangalore Institute of Pharmacy Education and Research, Yelahanka, Bangalore, 560064, India https://orcid.org/0000-0003-3785-3050
  • B. A. VISHWANATH Department of Pharmaceutics, Aditya Bangalore Institute of Pharmacy Education and Research, Yelahanka, Bangalore, 560064, India

DOI:

https://doi.org/10.22159/ijap.2022v14i2.43658

Keywords:

Capecitabine, Stealth liposomes, Colon cancer, Stability, Release kinetic, Sustained release

Abstract

Objective: Capecitabine is widely used in colorectal cancer treatment and has first-pass metabolism problem. Despite of its promising anticancer potential, capecitabine has not been used due to its poor solubility in water. The purpose of this study was to develop colon targeting capecitabine loaded stealth liposomes, which is a promising technique to avoid first-pass metabolism to achieve the desired bioavailability profile, increased water solubility and sustained release.

Methods: Thin film hydration method was used to prepare capecitabine stealth liposomes. Prepared liposomes were characterized for drug release kinetics, stability studies, cell viability studies to determine the cytotoxic effect and in vivo studies in mice bearing colon carcinoma for evaluation of antitumor potential.

Results: In vitro releases of liposomes were best fitted in the Higuchi matrix kinetic model with an n value from 0.868-0.964, indicating non-fickian release diffusion. Stability data indicated that liposomes were stable for at least 06 mo at 5±3 ° C. inhibiting activity was increased and with a Significant improvement in AUC, MRT and t1/2 observed as 29.65±5.08, µg h/ml for Stealth liposomes compared with the pure capecitabine and the conventional liposomes.

Conclusion: Results suggested that Capecitabine-loaded stealth liposomes can be an effective delivery system for targeting colon cancer.

Downloads

Download data is not yet available.

References

Khan N, Afaq F, Mukhtar H. Lifestyle as risk factor for cancer: evidence from human studies. Cancer Lett. 2010;293(2):133-43. doi: 10.1016/j.canlet.2009.12.013. PMID 20080335.

Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rect Surg. 2009;22(4):191-7. doi: 10.1055/s-0029-1242458, PMID 21037809.

Mishra J, Drummond J, Quazi SH, Karanki SS, Shaw JJ, Chen B, Kumar N. Prospective of colon cancer treatments and scope for a combinatorial approach to enhanced cancer cell apoptosis. Crit Rev Oncol Hematol. 2013;86(3):232-50. doi: 10.1016/j.critrevonc.2012.09.014. PMID 23098684.

Polachi N, Nagaraja P, Subramaniya B, Mathan G. Antiproliferative activity of N-butanol floral extract from butea monosperma against HCT 116 colon cancer cells; drug-likeness properties and in silico evaluation of their active compounds toward glycogen synthase kinase-3β/axin and β-catenin/T-cell factor-4 protein complex. Asian J Pharm Clin Res. 2015;8(1):134-41.

Santhosh Kumar DSR, Senthilkumar P, Surendran L, Sudhagar B. Ganoderma lucidum-oriental mushroom mediated synthesis of gold nanoparticles conjugated with doxorubicin and evaluation of its anticancer potential on human breast cancer mcf-7/dox cells. Int J Pharm Pharm Sci 2017;9(9):20093. doi: 10.22159/ijpps.2017v9i9.20093.

Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3:7. doi: 10.1038/s41392-017-0004-3. PMID 29560283.

Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291-309. doi: 10.2147/IJN.S146315, PMID 29042776.

Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez Torres MDP, Acosta Torres LS, Diaz Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. doi: 10.1186/s12951-018-0392-8. PMID 30231877.

Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17-38. doi: 10.1016/j.addr.2018.07.007. PMID 30009886.

Akbarzadeh A, Sadabady R-R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Koshki KN. Liosome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):1-9. doi: 10.1186/1556-276x-8-102(2013).

Vani GN, Alagusundaram M, Chandrasekar KB. Formulation and optimization and in vitro characterization of olanzapine liposome. Int J Appl Pharm. 2021;13(5):109-14. doi: 10.22159/ijap.2021v13i5.42085.

Biswas S, Dodwadkar NS, Sawant RR, Torchilin VP. Development of the novel PEG-PE-based polymer for the reversible attachment of specific ligands to liposomes: synthesis and in vitro characterization. Bioconjug Chem. 2011;22(10):2005-13. doi: 10.1021/bc2002133, PMID 21870873.

Swami H, Kataria MK, Bilandi A, Kour P, Bala. Liposome: an art for drug delivery. Int J Pharm Sci Lett. 2015;5:523-30.

Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975-99. doi: 10.2147/IJN.S68861. PMID 25678787.

Roy D, Das S, Samanta A. Design and in vitro release kinetics of liposomal formulation of acyclovir. Int J Appl Pharm. 2019;11(6):61-5. doi: 10.22159/ijap.2019v11i6.34917.

Muppidi K, Pumerantz AS, Wang J, Betageri G. Development and stability studies of novel liposomal vancomycin formulations. ISRN Pharm. 2012;2012:636743. doi: 10.5402/2012/636743, PMID 22500244.

Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286. doi: 10.3389/fphar.2015.00286, PMID 26648870.

Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505-15. doi: 10.1021/mp800051m, PMID 18672949.

Banerjee SS, Aher N, Patil R, Khandare J. Poly(ethylene glycol)-prodrug conjugates: concept, design, and applications. J Drug Deliv. 2012;2012:103973. doi: 10.1155/2012/103973, PMID 22645686.

Begum MY, Abbulu K, Sudhakar M. Flurbiprofen-loaded stealth liposomes: studies on the development, characterization, pharmacokinetics, and biodistribution. J Young Pharm. 2012;4(4):209-19. doi: 10.4103/0975-1483.104364, PMID 23493109.

Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297-315. PMID 17717971.

Ali BC, Sagıroglu A, Ozdemir S. Design, optimization and characterization of coenzyme Q10- and D-panthenyl triacetate-loaded liposomes. Int J Nanomedicine. 2017;12:4869-78. doi: 10.2147/ijn. s140835.

Uhumwangho M, Okor RS. Current trends in the production and biomedical applications of liposomes: a review. J Med Biomed Res. 2005;4(1):9-21. doi: 10.4314/jmbr.v4i1.10663.

Thorat YS, Kote NS, Patil VV, Hosmani AH. Formulation and evaluation of liposomal gel containing extract of piprine. Int J Curr Pharm Sci 2020;12:126-9. doi: 10.22159/ ijcpr.2020v12i3.38321.

Nkanga CI, Bapolisi AM, Kemefuna NI. General perception of liposomes: formation, manufacturing and applications. Liposomes Adv Perspect. 2019;10:1-11. doi: 10.5772/intechopen.84255.

Sudhakar B, Krishna MC, Murthy KVR. Factorial design studies of antiretroviral drug-loaded stealth liposomal injectable: pegylation, lyophilization and pharmacokinetic studies. Appl Nanosci. 2016;6(1):43-60. doi: 10.1007/s13204-015-0408-8.

Patel AT, Modiya PR, Shinde G, Patel R. Formulation and characterization of long circulating liposomes of anti fungal drug. Int J Pharm Res Technol. 2018;8(2):32-42.

Dave V, Sharma S, Yadav RB, Agarwal U. Herbal liposome for the topical delivery of ketoconazole for the effective treatment of seborrheic dermatitis. Appl Nanosci. 2017;7(8):973-87. doi: 10.1007/s13204-017-0634-3.

Lin W, Ma X, Zhou C, Yang H, Yang Y, Xie X, Yang C, Han C. Development and characteristics of novel sonosensitive liposomes for vincristine bitartrate. Drug Deliv. 2019;26(1):724-31. doi: 10.1080/10717544.2019.1639845, PMID 31293182.

Nik ME, Malaekeh Nikouei B, Amin M, Hatamipour M, Teymouri M, Sadeghnia HR, Iranshahi M, Jaafari MR. Liposomal formulation of galbanic acid improved therapeutic efficacy of pegylated liposomal doxorubicin in mouse colon carcinoma. Sci Rep. 2019;9(1):9527. doi: 10.1038/s41598-019-45974-7. PMID 31267009.

Sharma S, Kumar V. In vitro cytotoxicity effect on MCF-7 cell line of co-encapsulated artesunate and curcumin liposome. Int J Pharm Pharm Sci. 2017;9(3):123-8. doi: 10.22159/ijpps.2017v9i3.15872.

Xu Y, Meng H. Paclitaxel-loaded stealth liposomes: development, characterization, pharmacokinetics, and biodistribution. Artif Cells Nanomed Biotechnol. 2016;44(1):350-5. doi: 10.3109/21691401.2014.951722, PMID 25162671.

Dicheva BM, Seynhaeve AL, Soulie T, Eggermont AM, Ten Hagen TL, Koning GA. Pharmacokinetics, tissue distribution and therapeutic effect of cationic thermosensitive liposomal doxorubicin upon mild hyperthermia. Pharm Res. 2016;33(3):627-38. doi: 10.1007/s11095-015-1815-y, PMID 26518763.

Ghannam MM, El Gebaly R, Fadel M. Targeting doxorubicin encapsulated in stealth liposomes to solid tumors by non-thermal diode laser. Lipids Health Dis. 2016;15:68. doi: 10.1186/s12944-016-0235-2. PMID 27044538.

Goje A, Sharma S, Doijad RC. Gemcitabine loaded vesicular drug delivery system for targeting. Int J Pharm Anal Res. 2017;6(2):281-8.

Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(A):28-51. doi: 10.1016/j.addr.2015.09.012. PMID 26456916.

Ten Hagen TL, Seynhaeve AL, van Tiel ST, Ruiter DJ, Eggermont AM. Pegylated liposomal tumor necrosis factor-alpha results in reduced toxicity and synergistic antitumor activity after systemic administration in combination with liposomal doxorubicin (Doxil) in soft tissue sarcoma-bearing rats. Int J Cancer. 2002;97(1):115-20. doi: 10.1002/ijc.1578. PMID 11774252.

Henriksen I, Sande SA, Smistad G, Agren T, Karlsen J. In vitro evaluation of drug release kinetics from liposomes by fractional dialysis. International Journal of Pharmaceutics. 1995;119(2):231-8. doi: 10.1016/0378-5173(94)00403-R.

Bangale GS, Kesarala R, Shinde GV. Enhanced tumor targeting and antitumor activity of gemcitabine encapsulated stealth liposome’s. Indian J Pharm Educ Res 2015;49(4):304-19. doi: 10.5530/ijper.49.4.8.

Published

07-03-2022

How to Cite

PADMASREE, M., & VISHWANATH, B. A. (2022). DEVELOPMENT AND CHARACTERIZATION OF PEGYLATED CAPECITABINE LIPOSOMAL FORMULATIONS WITH ANTICANCER ACTIVITY TOWARDS COLON CANCER. International Journal of Applied Pharmaceutics, 14(2), 135–142. https://doi.org/10.22159/ijap.2022v14i2.43658

Issue

Section

Original Article(s)