LOXOPROFEN NANOSPONGES: FORMULATION, CHARACTERIZATION AND EX-VIVO STUDY

Authors

  • MANAL Y. HAMZA Department of Pharmaceutics, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt https://orcid.org/0000-0002-5764-0362
  • ZEINAB RAGHEB ABD EL AZIZ Department of Pharmaceutics, Egyptian Drug Authority (EDA) Formerly Known as National Organization for Drug Control and Research (NODCAR), Cairo, Egypt https://orcid.org/0000-0002-5277-1902
  • MOHAMED ALY KASSEM Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
  • MOHAMED AHMED EL- NABARAWI Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt https://orcid.org/0000-0003-0070-1969

DOI:

https://doi.org/10.22159/ijap.2022v14i2.43670

Keywords:

Loxoprofen sodium, Nanosponges, Ethylcellulose, Gel, Carbopol 934, Emulsion solvent diffusion method

Abstract

Objective: The objective of this study is to optimize a nanosponge formulation for Loxoprofen and then incorporating it into a gel formulation offering a controlled drug release, enhanced skin permeation and thus better bioavailability.

Methods: Loxoprofen nanosponges were prepared using the emulsion solvent diffusion method and formulated using Polyvinyl alcohol, Ethylcellulose and Dichloromethane. The effect of the different formulation variables like ethyl cellulose: polyvinyl alcohol ratio, drug: ethyl cellulose ratio, stirring time, stirring speed, internal phase volume and external phase volume on the particle size, entrapment efficiency, production yield, polydispersity index and Zeta potential was investigated. The optimized nanosponge formulation was incorporated into a gel. The loaded gel was evaluated by in vitro release and permeation studies and the results were compared to that of a marketed formulation (Loxonin® gel).

Results: The optimized formulation showed 67.29±1.19 % entrapment efficiency, 239.8±16.95 nm particle size and-8.32±0.87 mV Zeta potential. The drug was released slowly from the nanosponge-loaded gel where the cumulative percentage of drug released was only 77.71±0.42 % in 8 h where it was incorporated in the entrapped form while it was 99.31±0.64% from Loxonin® gel where it was in the unentrapped form. The cumulative percent of drug permeated through the skin from the nanosponge-loaded gel was 98.66±0.14% for 24 h while it was only 60.38±0.18% from Loxonin® gel.

Conclusion: The nanosponge-loaded gel showed more sustained drug release and a better drug permeation when compared to a marketed gel (Loxonin® gel).

Downloads

Download data is not yet available.

References

Magni A, Agostoni P, Bonezzi C, Massazza G, Mene P, Savarino V, Fornasari D. Management of osteoarthritis: expert opinion on NSAIDs. Pain Ther. 2021;10(2):783-808. doi: 10.1007/s40122-021-00260-1, PMID 33876393.

Lionberger DR, Joussellin E, Lanzarotti A, Yanchick J, Magelli M. Diclofenac epolamine topical patch relieves pain associated with ankle sprain. J Pain Res. 2011 Mar 7;4:47-53. doi: 10.2147/JPR.S15380, PMID 21559350.

Heyneman CA, Lawless Liday C, Wall GC. Oral versus topical NSAIDs in rheumatic diseases: a comparison. Drugs. 2000 Sep;60(3):555-74. doi: 10.2165/00003495-200060030-00004, PMID 11030467.

Hooper L, Brown TJ, Elliott R, Payne K, Roberts C, Symmons D. The effectiveness of five strategies for the prevention of gastrointestinal toxicity induced by non-steroidal anti-inflammatory drugs: a systematic review. BMJ. 2004 Oct 23;329(7472):948. doi: 10.1136/bmj.38232.680567.EB, PMID 15475342.

Ghanbarzadeh S, Arami S. Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and transfersomes. BioMed Res Int. 2013;2013:616810. doi: 10.1155/2013/616810.

Jain K, Gupta U, Jain NK. Dendronized nanoconjugates of lysine and folate for treatment of cancer. Eur J Pharm Biopharm. 2014 Aug;87(3):500-9. doi: 10.1016/j.ejpb.2014.03.015, PMID 24698808.

Abbas N, Parveen K, Hussain A, Latif S, Uz Zaman SU, Shah PA, Ahsan M. Nanosponge-based hydrogel preparation of fluconazole for improved topical delivery. Trop J Pharm Res. 2019 Feb 1;18(2):215-22. doi: 10.4314/tjpr.v18i2.1.

Wakure BS, Salunke MA, Mane PT, Awale SR, Shinde RD, Eklinge SS. Nanosponges as novel carrier for topical delivery of luliconazole-an antifungal drug. Int J Pharm Sci Res. 2022;12(10):5570.

Jenning V, Schafer Korting M, Gohla S. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release. 2000 May 15;66(2-3):115-26. doi: 10.1016/s0168-3659(99)00223-0, PMID 10742573.

Aldawsari HM, Badr-Eldin SM, Labib GS, El-Kamel AH. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: in vitro/in vivo evaluation. Int J Nanomedicine. 2015 Jan 29;10:893-902. doi: 10.2147/IJN.S74771, PMID 25673986.

Haltner Ukomadu E, Sacha M, Richter A, Hussein K. Hydrogel increases diclofenac skin permeation and absorption. Biopharm Drug Dispos. 2019 Jul;40(7):217-24. doi: 10.1002/bdd.2194, PMID 31242332.

Amer RI, El-Osaily GH, Gad SS. Design and optimization of topical terbinafine hydrochloride nanosponges: application of full factorial design, in vitro and in vivo evaluation. J Adv Pharm Technol Res. 2020 Jan–Mar;11(1):13-9. doi: 10.4103/japtr.JAPTR_85_19, PMID 32154153.

Solunke RS, Borge UR, Murthy K, Deshmukh MT, Shete RV. Formulation and evaluation of gliclazide nanosponges. Int J App Pharm. 2019 Nov 1;11(6):181-9. doi: 10.22159/ijap.2019v11i6.35006.

Ahmed MM, Fatima F, Anwer MK, Ibnouf EO, Kalam MA, Alshamsan A, Aldawsari MF, Alalaiwe A, Ansari MJ. Formulation and in vitro evaluation of topical nanosponge-based gel containing butenafine for the treatment of fungal skin infection. Saudi Pharm J. 2021 May 1;29(5):467-77. doi: 10.1016/j.jsps.2021.04.010, PMID 34135673.

Rao BN, Reddy KR, Fathima SR, Preethi P. Design, development and evaluation of diltiazem hydrochloride loaded nanosponges for oral delivery. Int J Curr Pharm Sci. 2020 Sep 17:116-22. doi: 10.22159/ijcpr.2020v12i5.39784.

Sujitha YS, Muzib YI. Formulation and optimization of quercetin loaded nanosponges topical gel: ex vivo, pharmacodynamic and pharmacokinetic studies. Int J App Pharm. 2019 Sep 1;11(5):156-65. doi: 10.22159/ijap.2019v11i5.32850.

Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D, Trotta M, Zara G, Cavalli R. Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm. 2010 Feb;74(2):193-201. doi: 10.1016/j.ejpb.2009.11.003, PMID 19900544.

Dubey P, Sharma HK, Shah S, Tyagi CK, Chandekar AR, Jadon RS. Formulations and evaluation of cyclodextrin complexed ceadroxil loaded nanosponges. IJDD. 2017 Oct 31;9(3):84. doi: 10.5138/09750215.2180.

Penjuri SCB, Ravouru N, Damineni S, Bns S, Poreddy SR. Formulation and evaluation of lansoprazole loaded nanosponges. TJPS. 2016 Dec 1;13(3):304-10. doi: 10.4274/tjps.2016.04.

Iriventi P, Gupta NV. Development and evaluation of nanosponge loaded topical herbal gel of wrightia tinctoria. Int J App Pharm. 2020 Jan 1;12(1):89-95. doi: 10.22159/ijap.2020v12i1.31198.

Aggarwal G, Nagpal M, Kaur G. Development and comparison of nanosponge and niosome based gel for the topical delivery of tazarotene. Pharm Nanotechnol. 2016 Sep 28;4(3):213-28. doi: 10.2174/2211738504666160804154213, PMID 29052500.

Shah NV, Seth AK, Balaraman R, Aundhia CJ, Maheshwari RA, Parmar GR. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: design and in vivo study. J Adv Res. 2016 May 1;7(3):423-34. doi: 10.1016/j.jare.2016.03.002, PMID 27222747.

Omar SM, Ibrahim F, Ismail A. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharm J. 2020 Mar 1;28(3):349-61. doi: 10.1016/j.jsps.2020.01.016, PMID 32194337.

Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963 Dec;52:1145-9. doi: 10.1002/jps.2600521210, PMID 14088963.

El- Leithy ES, Makky AM, Khattab AM, Hussein DG. Nanoemulsion gel of nutraceutical co-enzyme Q10 as an alternative to conventional topical delivery system to enhance skin permeability and anti-wrinkle efficiency. Int J Pharm Pharm Sci. 2017 Nov 1;9(10):207. doi: 10.22159/ijpps.2017v9i11.21751.

Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech. 2011 Mar;12(1):279-86. doi: 10.1208/s12249-011-9584-3, PMID 21240574.

Shabbir M, Sajid A, Hamid I, Sharif A, Akhtar MF, Raza M, Ahmed S, Peerzada S, Amin MU. Influence of different formulation variables on the performance of transdermal drug delivery system containing tizanidine hydrochloride: in vitro and ex vivo evaluations. Braz J Pharm Sci. 2018;54(4). doi: 10.1590/s2175-97902018000400130.

Pawar AP, Gholap AP, Kuchekar AB, Bothiraja C, Mali AJ. Formulation and evaluation of optimized oxybenzone microsponge gel for topical delivery. J Drug Deliv. 2015 Feb 18;2015:261068. doi: 10.1155/2015/261068, PMID 25789176.

Hussain A, Latif S, Abbas N, Irfan M, Arshad MS, Bukhari NI. Hydroxypropyl cellulose-based orally disintegrating films of promethazine HCl for the treatment of motion sickness. Trop J Pharm Res. 2018 Jun 1;17(6):991-6. doi: 10.4314/tjpr.v17i6.2.

Ahmed RZ, Patil G, Zaheer Z. Nanosponges- a completely new nano-horizon: pharmaceutical applications and recent advances. Drug Dev Ind Pharm. 2013 Sep;39(9):1263-72. doi: 10.3109/03639045.2012.694610, PMID 22681585.

El-Assal MI. Nano-sponge novel drug delivery system as carrier of anti-hypertensive drug. Int J Pharm Pharm Sci. 2019 Oct 1:47-63. doi: 10.22159/ijpps.2019v11i10.34812.

Shoaib QUA, Abbas N, Irfan M, Hussain A, Arshad MS, Hussain SZ, Latif S, Bukhari NI. Development and evaluation of scaffold-based nanosponge formulation for controlled drug delivery of naproxen and ibuprofen. Trop J Pharm Res. 2018 Aug 1;17(8):1465-74. doi: 10.4314/tjpr.v17i8.2.

Moin A, Deb TK, Osmani RA, Bhosale RR, Hani U. Fabrication, characterization, and evaluation of microsponge delivery system for facilitated fungal therapy. J Basic Clin Pharm. 2016 Mar;7(2):39-48. doi: 10.4103/0976-0105.177705, PMID 27057125.

Almutairy BK, Alshetaili A, Alali AS, Ahmed MM, Anwer MK, Aboudzadeh MA. Design of olmesartan medoxomil-loaded nanosponges for hypertension and lung cancer treatments. Polymers (Basel). 2021 Jul 11;13(14):2272. doi: 10.3390/polym13142272, PMID 34301030.

El-Housiny S, Shams Eldeen MA, El-Attar YA, Salem HA, Attia D, Bendas ER, El-Nabarawi MA. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv. 2018 Nov;25(1):78-90. doi: 10.1080/10717544.2017.1413444, PMID 29239242.

Pandya KD, Shah NV, Gohil DY, Seth AK, Aundhia CJ, Patel SS. Development of risedronate sodium-loaded nanosponges by experimental design: optimization and in vitro characterization. Pharmaceutical Sciences. 2019;81(2):309-16. doi: 10.36468/pharmaceutical-sciences.512.

Ramteke KH, Dighe PA, Kharat AR, Patil SV. Mathematical models of drug dissolution: a review. Sch Acad J Pharmacol. 2014;3(5):388-96.

Ghasemiyeh P, Mohammadi Samani S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: advantages and disadvantages. Drug Des Dev Ther. 2020 Aug 12;14:3271-89. doi: 10.2147/DDDT.S264648, PMID 32848366.

Simranjot Kaur, Sandeep Kumar. The nanosponges: an innovative drug delivery system. Asian J Pharm Clin Res. 2019 May 30:60-7. doi: 10.22159/ajpcr.2019.v12i7.33879.

Published

07-03-2022

How to Cite

HAMZA, M. Y., ABD EL AZIZ, Z. R., ALY KASSEM, M., & EL- NABARAWI, M. A. (2022). LOXOPROFEN NANOSPONGES: FORMULATION, CHARACTERIZATION AND EX-VIVO STUDY. International Journal of Applied Pharmaceutics, 14(2), 233–241. https://doi.org/10.22159/ijap.2022v14i2.43670

Issue

Section

Original Article(s)