A REVIEW OF ADVANCED NANOTECHNOLOGIES AND DRUG DELIVERY SYSTEMS OF SALINOMYCIN AND THEIR ROLE IN TRIPLE-NEGATIVE BREAST CANCER

Authors

  • GOKUL RAJ R. Department of Pharmaceutics, JSS College of Pharmacy, JSSAHER, SS Nagara, Mysuru 570015, Karnataka, India
  • PREETHI S. Department of Pharmaceutics, JSS College of Pharmacy, JSSAHER, SS Nagara, Mysuru 570015, Karnataka, India
  • AMIT B. PATIL Department of Pharmaceutics, JSS College of Pharmacy, JSSAHER, SS Nagara, Mysuru 570015, Karnataka, India
  • VIKAS JAIN Department of Pharmaceutics, JSS College of Pharmacy, JSSAHER, SS Nagara, Mysuru 570015, Karnataka, India
  • RAMKISHAN AJMEER Department of Pharmaceutics, JSS College of Pharmacy, JSSAHER, SS Nagara, Mysuru 570015, Karnataka, India

DOI:

https://doi.org/10.22159/ijap.2022v14i4.44237

Keywords:

Salinomycin, Breast cancer, Nanotechnology, Drug delivery system

Abstract

Cancer cells spread to other tissues and organs when they divide incorrectly. Breast cancer (BC) is the main cause of cancer-related mortality globally. Some recent studies on cancer stem cells (CSCs), drug resistance, tumor recurrence and metastasis, and the significance of CD44+in targeted treatment for breast cancer are covered. Breast cancer stem cells (BCSCs) and bulk BC cells must be eliminated for the disease to be eliminated. Researchers have shown that Streptomyces Albus-derived monocarboxylic polyether antibiotic salinomycin kills human cancer stem cells (CSCs) and prevents the spread and growth of breast cancer cells. Several drug and apoptosis resistance mechanisms may also trigger apoptosis in breast cancer cells when salinomycin is used in combination with the treatment. Apoptosis-resistant cancer cells and cancer stem cells are both susceptible to the anticancer drug salinomycin. Salinomycin may be able to inhibit CSCs, as well as the source and structure modification of salinomycin analog exhibit potent anticancer activity, the effect of salinomycin on chemotherapeutic-resistant CSCs, and the various mechanisms by which salinomycin inhibits cancer stem cells in this study. Method and delivery technique for salinomycin Nano formulation in triple-negative breast cancer and also contains pharmacokinetics and toxicity of salinomycin. Salinomycin-based drug delivery system is the subject of the patent information. Tumor genesis, development, and invasion are all aided by salinomycin. It's possible to boost the effectiveness of cancer therapy by focusing on cancer stem cells (CSCs).

Downloads

Download data is not yet available.

References

Miller Kd, Sauer A, Sa F. Colorectal cancer statistics. 2020;70(3):145-64.

Loomis D, Huang W, Chen G. The international agency for research on cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. Chin J Cancer. 2014;33(4):189-96. doi: 10.5732/cjc.014.10028, PMID 24694836.

SP Kumar H, Rawal Vb, Ajmeer R, Jain V. Overview of mitoxantrone-a potential candidate for treatment of breast cancer. Int J Appl Pharm. 2021;14(2).

Denny Dc, Ss Y, RV, Fardan M, Iype Ds, K Am. Cardiovascular risk associated with androgen deprivation therapy in advanced prostate cancer. Asian J Pharm Clin Res. 2021 Aug 7:6-9.

Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer 2019 Apr 10;11:151-64.

Mannan AU, Singh J, Lakshmikeshava R, Thota N, Singh S, Sowmya TS, Mishra A, Sinha A, Deshwal S, Soni MR, Chandrasekar A, Ramesh B, Ramamurthy B, Padhi S, Manek P, Ramalingam R, Kapoor S, Ghosh M, Sankaran S, Ghosh A, Veeramachaneni V, Ramamoorthy P, Hariharan R, Subramanian K. Detection of high frequency of mutations in a breast and/or ovarian cancer cohort: implications of embracing a multi-gene panel in molecular diagnosis in India. J Hum Genet. 2016;61(6):515-22. doi: 10.1038/jhg.2016.4, PMID 26911350.

Kumar A. Comprehensive review on etiopathogenesis, treatment and emerging therapies of breast cancer. Asian J Pharm Clin Res. 2021;14(8):20-33. doi: 10.22159/ ajpcr.2021.v14i8.41974.

Lubakisar A Yq, Fauziah F, Bellatasie R. Immunomodulator activity of mangiferin from mango (Mangifera indica L.) in cancer: A systematic review. Int J Pharm Pharm Sci. 2021 Oct 1:7-11.

Sharma GN, Dave R, Sanadya J, Sharma P, Sharma KK. Various types and management of breast cancer: an overview. J Adv Pharm Technol Res. 2010 Apr;1(2):109-26. PMID 22247839.

Fisher B. From halsted to prevention and beyond: advances in the management of breast cancer during the twentieth century. Eur J Cancer. 1999;35(14):1963-73. doi: 10.1016/s0959-8049(99)00217-8, PMID 10711239.

Wielsøe M, Gudmundsdottir S, Bonefeld-Jørgensen EC. Reproductive history and dietary habits and breast cancer risk in Greenlandic Inuit: A case control study. Public Health. 2016;137:50-8. doi: 10.1016/j.puhe.2016.06.016, PMID 27450442.

Hanf V, Hanf D. Reproduction and breast cancer risk. Breast Care (Basel). 2014;9(6):398-405. doi: 10.1159/000369570, PMID 25759622.

Wang X, Li L, Gao J, Liu J, Guo M, Liu L, Wang W, Wang J, Xing Z, Yu Z, Wang X. The association between body size and breast cancer in Han women in northern and Eastern China. Oncologist. 2016 Nov;21(11):1362-8. doi: 10.1634/ theoncologist.2016-0147, PMID 27496041.

Shield KD, Soerjomataram I, Rehm J. Alcohol use and breast cancer: A critical review. Alcohol Clin Exp Res. 2016 Jun;40(6):1166-81. doi: 10.1111/acer.13071, PMID 27130687.

Pastor Barriuso R, Fernandez MF, Castano Vinyals G, Whelan D, Perez Gomez B, Llorca J, Villanueva CM, Guevara M, Molina Molina JM, Artacho Cordon F, Barriuso Lapresa L, Tusquets I, Dierssen Sotos T, Aragones N, Olea N, Kogevinas M, Pollan M. Total effective xenoestrogen burden in serum samples and risk for breast cancer in a population-based multicase-control study in spain. Environ Health Perspect. 2016 Oct;124(10):1575-82. doi: 10.1289/EHP157, PMID 27203080.

Gonzalez Angulo AM, Morales Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007;608:1-22. doi: 10.1007/978-0-387-74039-3_1, PMID 17993229.

Bhutadiya VL, Mistry KN. A review on bioactive phytochemicals and it’s mechanism on cancer treatment and prevention by targeting multiple cellular signaling pathways. Int J Pharm Pharm Sci. 2021 Dec 1:15-9. doi: 10.22159/ ijpps.2021v13i12.42798.

Hubalek M, Czech T, Müller H. Biological subtypes of triple-negative breast cancer. Breast Care (Basel). 2017;12(1):8-14. doi: 10.1159/000455820, PMID 28611535.

Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61. doi: 10.1186/s13058-020-01296-5, PMID 32517735.

Nair M, Sandhu SS, Sharma AK. Prognostic and predictive biomarkers in cancer. Curr Cancer Drug Targets. 2014;14(5):477-504. doi: 10.2174/1568009614666140506111118, PMID 24807144.

Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014 Sep 15;25(18):2677-81. doi: 10.1091/mbc.E14-04-0916, PMID 25213191.

Naemi AO, Dey H, Kiran N, Sandvik ST, Slettemeas JS, Nesse LL, Simm R. Narab is an ABC-type transporter that confers resistance to the polyether ionophores narasin, salinomycin, and maduramicin, but not monensin. Front Microbiol. 2020 Feb 4;11. doi: 10.3389/fmicb.2020.00104.

Rutkowski J, Brzezinski B. Structures and properties of naturally occurring polyether antibiotics. BiomMed Res Int. 2013;2013:162513:162513. doi: 10.1155/2013/162513.

Tan C, Tan H, Zhang J. [Enhancement of salinomycin production and its activity optimization- A review]. Wei Sheng Wu Xue Bao. 2016 Sep;56(9):1371-84. PMID 29738206.

Lu C, Zhang X, Jiang M, Bai L. Enhanced salinomycin production by adjusting the supply of polyketide extender units in treptomyces albus streptomyces albus. Metab Eng. 2016 May;35:129-37. doi: 10.1016/j.ymben.2016.02.012, PMID 26969249.

Zhen X, Choi HS, Kim JH, Kim SL, Liu R, Yun BS, Lee DS. Machilin D, A lignin derived from saururus chinensis, suppresses breast cancer stem cells and inhibits NF-Κb signaling. Biomolecules. 2020;10(2). doi: 10.3390/biom10020245, PMID 32033472.

Kumar S, Kaur R, Rajput R, Singh M. Bio pharmaceutics classification system (BCS) class IV drug nanoparticles: quantum leap to improve their therapeutic index. Adv Pharm Bull. 2018 Nov;8(4):617-25. doi: 10.15171/apb.2018.070, PMID 30607334.

Zhang Y, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials. 2012 Jan;33(2):679-91. doi: 10.1016/j.biomaterials.2011.09.072, PMID 22019123.

Wen H, Jung H, Li X. Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J. 2015 Nov;17(6):1327-40. doi: 10.1208/s12248-015-9814-9, PMID 26276218.

Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20-37. doi: 10.1038/nrc.2016.108, PMID 27834398.

Furtula V, Stephenson GL, Olaveson KM, Chambers PA. Effects of the veterinary pharmaceutical salinomycin and its formulation on the plant brassica rapa. Arch Environ Contam Toxicol. 2012;63(4):513-22. doi: 10.1007/s00244-012-9807-y, PMID 22961218.

Momekova D, Momekov G, Ivanova J, Pantcheva I, Drakalska E, Stoyanov N, Guenova M, Michova A, Balashev K, Arpadjan S, Mitewa M, Rangelov S, Lambov N. Sterically stabilized liposomes as a platform for salinomycin metal coordination compounds: physicochemical characterization and in vitro evaluation. J Drug Deliv Sci Technol. 2013;23(3):215-23. doi: 10.1016/S1773-2247(13)50033-5.

Li HG, Luo W, Wang Q, Yu XB. Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using clostridium acetobutylicum clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma. Appl Biochem Biotechnol. 2014 Apr 12;172(7):3330-41. doi: 10.1007/s12010-014-0765-x, PMID 24519630.

Michel AR. Synthesis and characterization of novel silicate prodrugs and block copolymers for use into nanoparticle drug delivery [ProQuest diss]. Theses 2015(Oct):405.

Schlusener MP, Bester K. Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environ Pollut. 2006;143(3):565-71. doi: 10.1016/j.envpol.2005.10.049, PMID 16460854.

Antoszczak M. A comprehensive review of salinomycin derivatives as potent anticancer and anti-CscsSCS agents. Eur J Med Chem. 2019;166:48-64. doi: 10.1016/j.ejmech. 2019.01.034, PMID 30684870.

Pasenkiewicz Gierula M, Baczynski K, Markiewicz M, Murzyn K. Computer modelling studies of the bilayer/water interface. Biochim Biophys Acta Biomembr. 2016;1858(10):2305-21. doi: 10.1016/j.bbamem.2016.01.024, PMID 26825705.

Ross MF, Kelso GF, Blaikie FH, James AM, Cocheme HM, Filipovska A, Da Ros T, Hurd TR, Smith RAJ, Murphy MP. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc). 2005 Feb;70(2):222-30. doi: 10.1007/s10541-005-0104-5, PMID 15807662.

Frankel DA, O’Brien DF. Supramolecular assemblies of diacetylenic aldonamides. J Am Chem Soc. 1994 Nov 1;116(22):10057-69. doi: 10.1021/ja00101a026.

Watson H. Biological membranes. Essays Biochem. 2015;59:43-69. doi: 10.1042/bse0590043, PMID 26504250.

Hu CMJM, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv. 2010;1(2):323-34. doi: 10.4155/tde.10.13, PMID 22816135.

Antoszczak M, Popiel K, Stefanska J, Wietrzyk J, Maj E, Janczak J, Michalska G, Brzezinski B, Huczynski A. Synthesis, cytotoxicity and antibacterial activity of new esters of polyether antibiotic- salinomycin. Eur J Med Chem 2014;76:435-44. doi: 10.1016/j.ejmech.2014.02.031, PMID 24602789.

Huczynski A, Janczak J, Stefanska J, Antoszczak M, Brzezinski B. Synthesis and antimicrobial activity of amide derivatives of polyether antibiotic-salinomycin. Bioorg Med Chem Lett. 2012;22(14):4697-702. doi: 10.1016/j.bmcl.2012.05.081, PMID 22721714.

Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv Pharm Bull. 2017 Sep;7(3):339-48. doi: 10.15171/apb.2017.041, PMID 29071215.

Zhang W, Wu J, Li B, Lian X, Xia J, Zhou Q, Wu S. Design and synthesis of conformationally constrained salinomycin derivatives. Eur J Med Chem. 2017;138:353-6. doi: 10.1016/j.ejmech.2017.06.063, PMID 28688275.

Czerwonka D, Mielczarek Puta M, Antoszczak M, Cioch A, Struga M, Huczynski A. Evaluation of the anticancer activity of singly and doubly modified analogues of C20-epi-salinomycin. Eur J Pharmacol. 2021;908:174347:174347. doi: 10.1016/ j.ejphar.2021.174347.

Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond). 2012;7(4):597-615. doi: 10.2217/nnm.12.22, PMID 22471722.

Antoszczak M, Huczynski A. Anticancer activity of polyether ionophore-salinomycin. Anti-Cancer Agents Med Chem. 2015;15(5):575-91.

Huang M, Deng Z, Tian J, Liu T. Synthesis and biological evaluation of salinomycin triazole analogues as anticancer agents. Eur J Med Chem. 2017 Feb 15;127:900-8. doi: 10.1016/j.ejmech.2016.10.067, PMID 27876192.

Huczynski A. Salinomycin: a new cancer drug candidate. Chem Biol Drug Des. 2012 Mar;79(3):235-8. doi: 10.1111/j.1747-0285.2011.01287.x, PMID 22145602.

Wenxuan Z, Wu J, Li B, Xia J, Wu H, Hao J, Wang L, Zhou Q, Wu S. Synthesis and biological activity evaluation of 20-epi-salinomycin and its 20-O-acyl derivatives. RSC Adv. 2016 Apr 26;6.

Naujokat C, Steinhart R. Salinomycin as a drug for targeting human cancer stem cells. J Biomed Biotechnol. 2012;2012:1–17950658. doi: 10.1155/2012/950658, PMID 23251084.

Naujokat C, Steinhart R. Salinomycin as a drug for targeting human cancer stem cells. J Biomed Biotechnol. 2012;2012:44–6950658. doi: 10.1155/2012/950658, PMID 23251084.

Asuzu DT. Epigenetic regulation of stem cells in cancer and aging. College of Medicine, Mayo Clinic; 2011.

Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645-59. doi: 10.1016/j.cell.2009.06.034, PMID 19682730.

Zhou S, Wang F, Wong TE, Fonkem E, Hsieh TC, M Wu J, Wu E. Salinomycin: A novel anti-cancer agent with known anti-coccidial activities. Curr Med Chem. 2013;20(33):4095–101.

Zhi QM, Chen XH, Ji J, Zhang JN, Li JF, Cai Q, Liu BY, Gu QL, Zhu ZG, Yu YY. Salinomycin can effectively kill ALDH(high) stem-like cells on gastric cancer. Biomed Pharmacother. 2011;65(7):509-15. doi: 10.1016/j.biopha.2011.06.006, PMID 21996439.

Li Y, Upadhyay S, Bhuiyan M, Sarkar FH. Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene. 1999;18(20):3166-72. doi: 10.1038/sj.onc.1202650, PMID 10340389.

Irmak G, Ozturk MG, Gumusderelioglu M. Salinomycin encapsulated PLGA nanoparticles eliminate osteosarcoma cells via inducing/inhibiting multiple signaling pathways: comparison with free salinomycin. J Drug Deliv Sci Technol. 2020;58. doi: 10.1016/j.jddst.2020.101834, PMID 101834.

Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH. Overview of cancer stem cells (Cscs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol. 2013 Jun;14:25. doi: 10.1002/0471141755.ph1425s61, PMID 23744710.

Kim JH, Chae M, Kim WK, Kim YJ, Kang HS, Kim HS, Yoon S. Salinomycin sensitizes cancer cells to the effects of doxorubicin and etoposide treatment by increasing DNA damage and reducing P21 protein. Br J Pharmacol. 2011 Feb;162(3):773-84. doi: 10.1111/j.1476-5381.2010.01089.x, PMID 20973777.

He M, Fu Y, Yan Y, Xiao Q, Wu H, Yao W, Zhao H, Zhao L, Jiang Q, Yu Z, Jin F, Mi X, Wang E, Cui Z, Fu L, Chen J, Wei M. The hedgehog signalling pathway mediates drug response of MCF-7 mammosphere cells in breast cancer patients. Clin Sci. (Lond). 2015 Nov 1;129(9):809-22. doi: 10.1042/CS20140592, PMID 26201092.

An H, Kim JY, Lee N, Cho Y, Oh E, Seo JH. Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway. Biochem Biophys Res Commun. 2015 Oct;466(4):696-703. doi: 10.1016/j.bbrc.2015.09.108, PMID 26407842.

Ketola K, Hilvo M, Hyotylainen T, Vuoristo A, Ruskeepaa AL, Oresic M, Kallioniemi O, Iljin K. Salinomycin inhibits prostate cancer growth and migration via induction of oxidative stress. Br J Cancer. 2012;106(1):99-106. doi: 10.1038/bjc.2011.530, PMID 22215106.

Huang X, Borgstrom B, Stegmayr J, Abassi Y, Kruszyk M, Leffler H, Persson L, Albinsson S, Massoumi R, Scheblykin IG, Hegardt C, Oredsson S, Strand D. The molecular basis for inhibition of stemlike cancer cells by salinomycin. ACS Cent Sci. 2018 Jun 27;4(6):760-7. doi: 10.1021/acscentsci.8b00257, PMID 29974072.

Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome C and Datp-dependent formation of apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91(4):479-89. doi: 10.1016/s0092-8674(00)80434-1, PMID 9390557.

Kim JH, Chae M, Kim WK, Kim YJ, Kang HS, Kim HS, Yoon S. Salinomycin sensitizes cancer cells to the effects of doxorubicin and etoposide treatment by increasing DNA damage and reducing P21 protein. Br J Pharmacol. 2011 Feb;162(3):773-84. doi: 10.1111/j.1476-5381.2010.01089.x, PMID 20973777.

Fuchs D, Heinold A, Opelz G, Daniel V, Naujokat C. Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem Biophys Res Commun. 2009 Dec;390(3):743-9. doi: 10.1016/j.bbrc.2009.10.042, PMID 19835841.

Kim JH, Yoo HI, Kang HS, Ro J, Yoon S. Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest. Biochem Biophys Res Commun. 2012 Feb;418(1):98-103. doi: 10.1016/j.bbrc.2011.12.141, PMID 22244892.

Jiang J, Li H, Qaed E, Zhang J, Song Y, Wu R, Bu X, Wang Q, Tang Z. Salinomycin, as an autophagy modulator-A new avenue to anticancer: a review. J Exp Clin Cancer Res. 2018 Dec 13;37(1):26. doi: 10.1186/s13046-018-0680-z, PMID 29433536.

Yue W, Hamai A, Tonelli G, Bauvy C, Nicolas V, Tharinger H, Codogno P, Mehrpour M. Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy. 2013 May;9(5):714-29. doi: 10.4161/auto.23997, PMID 23519090.

Xipell E, Gonzalez Huarriz M, DMartinez de Irujo JJM, Garcia Garzon A, Lang FF, Jiang H, Fueyo J, Gomez Manzano C, Alonso MM. Salinomycin-induced ROS Results in abortive autophagy and leads to regulated necrosis in glioblastoma. Oncotarget. 2016 May 24;7(21):30626-41. doi: 10.18632/oncotarget.8905, PMID 27121320.

Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for cancer therapy based on chemotherapy. Molecules. 2018 Apr 4;23(4). doi: 10.3390/molecules23040826, PMID 29617302.

Liang DS, Liu J, Peng TX, Peng H, Guo F, Zhong HJ. Vitamin E-based redox-sensitive salinomycin prodrug-nanosystem with paclitaxel loaded for cancer-targeted and combined chemotherapy. Colloids Surf B Biointerfaces. 2018 Dec 1;172:506-16. doi: 10.1016/j.colsurfb.2018.08.063, PMID 30212688.

Mollazadeh S, Mackiewicz M, Yazdimamaghani M. Recent advances in the redox-responsive drug delivery nanoplatforms: A chemical structure and physical property perspective. Mater Sci Eng C Mater Biol Appl. 2021;118:111536:111536. doi: 10.1016/j.msec.2020.111536.

Zhang S, Li Y, Wu Y, Shi K, Bing L, Hao J. Wnt/Β-Catenin signaling pathway upregulates C-myc expression to promote cell proliferation of P19 teratocarcinoma cells. Anat Rec (Hoboken). 2012 Dec;295(12):2104-13. doi: 10.1002/ar.22592, PMID 22976998.

Li B, Li Q, Mo J, Dai H. Drug-loaded polymeric nanoparticles for cancer stem cell targeting. Front Pharmacol. 2017 Feb 14;8:51. doi: 10.3389/fphar.2017.00051, PMID 28261093.

Das J, Debbarma A, Lalhlenmawia H. Formulation and in vitro evaluation of poly-(D, L-Lactide-Co-Glycolide) (Plga) nanoparticles of ellagic acid and its effect on human breast cancer, Mcf-7 cell line. Int J Curr Pharm Sci. 2021;13(5):56-62. doi: 10.22159/ijcpr.2021v13i5.1887.

Tefas LR, Barbalata C, Tefas C, Tomuta I. Salinomycin based drug delivery systems: overcoming the hurdles in cancer therapy. Pharmaceutics. 2021 Jul 22;13(8). doi: 10.3390/pharmaceutics13081120, PMID 34452081.

Mao X, Liu J, Gong Z, Zhang H, Lu Y, Zou H, Yu Y, Chen Y, Sun Z, Li W, Li B, Gao J, Zhong Y. iRGD-conjugated DSPE-PEG2000 nanomicelles for targeted delivery of salinomycin for treatment of both liver cancer cells and cancer stem cells. Nanomedicine (Lond). 2015;10(17):2677-95. doi: 10.2217/nnm.15.106. PMID 26355733.

Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004 Jan 1;377:159-69. doi: 10.1042/bj20031253.

Song Y, Cai H, Yin T, Huo M, Ma P, Zhou J, Lai W. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment. Int J Nanomedicine. 2018;13:1585-600. doi: 10.2147/IJN.S155383, PMID 29588586.

Liang DS, Liu J, Peng TX, Peng H, Guo F, Zhong HJ. Vitamin E-based redox-sensitive salinomycin prodrug-nanosystem with paclitaxel loaded for cancer-targeted and combined chemotherapy. Colloids Surfaces B Biointerfaces. 2018;172:506-16. doi: 10.1016/j.colsurfb.2018.08.063, PMID 30212688.

Tefas LR, Barbalata C, Tefas C, Tomuta I. Salinomycin based drug delivery systems: overcoming the hurdles in cancer therapy. Pharmaceutics. 2021 Jul 22;13(8):1120. doi: 10.3390/pharmaceutics13081120, PMID 34452081.

Zeng YB, Yu ZC, He YN, Zhang T, Du LB, Dong YM, Chen HW, Zhang YY, Wang WQ. Salinomycin-loaded lipid-polymer nanoparticles with anti-CD20 aptamers selectively suppress human CD20+melanoma stem cells. Acta Pharmacol Sin. 2018 Feb;39(2):261-74. doi: 10.1038/aps.2017.166, PMID 29388568.

Yao J, Zhang L, Zhou J, Liu H, Zhang Q. Efficient simultaneous tumor targeting delivery of all-trans retinoid acid and paclitaxel based on hyaluronic acid-based multifunctional nanocarrier. Mol Pharm. 2013;10(3):1080-91. doi: 10.1021/mp3005808, PMID 23320642.

Arabi L, Badiee A, Mosaffa F, Jaafari MR. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin. J Control Release. 2015;220(A):275–-86. doi: 10.1016/j.jconrel.2015.10.044, PMID 26518722.

Schiffelers RM, Koning GA, Ten Hagen TLM, Fens MHAM, Schraa AJ, Janssen APCA, Kok RJ, Molema G, Storm G. Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release. 2003;91(1-2):115-22. doi: 10.1016/s0168-3659(03)00240-2, PMID 12932643.

Baldwin PM, Adler J, Davies MC, Melia CD. High-resolution imaging of starch granule surfaces by atomic force microscopy. J Cereal Sci. 1998;27(3):255-65. doi: 10.1006/jcrs.1998.0189.

Kuo YC, Chen YC. Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin- and folic acid-grafted poly(lactide-co-glycolide) nanoparticles. Int J Pharm. 2015;479(1):138-49. doi: 10.1016/j.ijpharm.2014.12.070, PMID 25560309.

Min KH, Park K, Kim YS, Bae SM, Lee S, Jo HG, Park RW, Kim IS, Jeong SY, Kim K, Kwon IC. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release. 2008;127(3):208-18. doi: 10.1016/j.jconrel.2008.01.013, PMID 18336946.

Willing BF. Abundance of antibiotic resistance genes in feces following prophylactic and therapeutic intramammary antibiotic infusion in dairy cattle. Virginia Tech; 2013.

Lautz LS, Nebbia C, Hoeks S, Oldenkamp R, Hendriks AJ, Ragas AMJ, Dorne JLCM. An open-source physiologically based kinetic model for the chicken (Gallus Gallus gallus domesticus): calibration and validation for the prediction residues in tissues and eggs. Environ Int. 2020;136:105488:105488. doi: 10.1016/j.envint.2020.105488.

Zhou S, Wang F, Wong ET, Fonkem E, Hsieh TC, Wu JM, Wu E. Salinomycin: A novel anti-cancer agent with known anti-coccidial activities. Curr Med Chem. 2013;20(33):4095-101. doi: 10.2174/15672050113109990199, PMID 23931281.

Alexander J, Auounsson GA, Benford D, Cockburn A, Dogliotti E, Di Domenico A Di, Fernandez-Cruz ML, Fink-Gremmels J, Galli CL, Grandjean P, Gzyl J, Heinemeyer G, Johansson N, Mutti A, Schlatter J, Van Leeuwen R Van. Cross-contamination of non-target feedingstuffs by robenidine authorized for use as a feed additive-scientific opinion of the panel on contaminants in the food chain. EFSA J. 2008;6(4):1-38.

Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release. 2019;301:76-109. doi: 10.1016/j.jconrel.2019.03.015, PMID 30890445.

D’Alessandro S, Corbett Y, Ilboudo DP, Misiano P, Dahiya N, Abay SM, Habluetzel A, Grande R, Gismondo MR, Dechering KJ, Koolen KMJ, Sauerwein RW, Taramelli D, Basilico N, Parapini S. Salinomycin and other ionophores as a new class of antimalarial drugs with transmission-blocking activity. Antimicrob Agents Chemother. 2015 Sep;59(9):5135-44. doi: 10.1128/AAC.04332-14, PMID 26055362.

Naujokat C, Steinhart R. Salinomycin as a drug for targeting human cancer stem cells. J Biomed Biotechnol. 2012;1:950658. doi: 10.1155/2012/950658, PMID 23251084.

Naujokat C. Targeting human cancer stem cells with monoclonal antibodies. J Clin Cell Immunol. 2012;1(S5)(Suppl 5). doi: 10.4172/2155-9899.S5-007.

Rollinson J, Taylor FG, Chesney J. Salinomycin poisoning in horses. Vet Rec. 1987 Aug 8;121(6):126-8. doi: 10.1136/vr.121.6.126, PMID 3672848.

Dorne JLCM, Fernandez Cruz ML, Bertelsen U, Renshaw DW, Peltonen K, Anadon A, Feil A, Sanders P, Wester P, Fink Gremmels J. Risk assessment of coccidostatics during feed cross-contamination: animal and human health aspects. Toxicol Appl Pharmacol. 2013 Aug 1;270(3):196-208. doi: 10.1016/j.taap.2010.12.014, PMID 21215766.

Jangamreddy JR, Jain MV, Hallbeck AL, Roberg K, Lotfi K, Los MJ. Glucose starvation-mediated inhibition of salinomycin induced autophagy amplifies cancer cell-specific cell death. Oncotarget. 2015 Apr 30;6(12):10134-45. doi: 10.18632/oncotarget.3548, PMID 25912307.

Jangamreddy Jr GS, Grabarek J, Kratz G, Wiechec E, Fredriksson BA, Pariti R Rk, Cieslar Pobuda A, Panigrahi S, Los Mj. Salinomycin induces activation of autophagy, and mitophagy and affects mitochondrial polarity: differences between primary and cancer cells. Biochim Biophys Acta. 2013 Sep;1833(9):2057–69.

Schinke C, Fernandez Vallone V, Ivanov A, Peng Y, Kortvelyessy P, Nolte L, Huehnchen P, Beule D, Stachelscheid H, Boehmerle W, Endres M. Modeling chemotherapy-induced neurotoxicity with human induced pluripotent stem cell (Ipsc)-derived sensory neurons. Neurobiol Dis. 2021 Jul;155:105391. doi: 10.1016/j.nbd.2021.105391.

Naujokat C, Laufer S. Salinomycin, A candidate drug for the salinomycin, A candidate drug for the elimination of cancer stem cells elimination of cancer stem cells. Role Cancer Stem Cells Cancer Biol Ther; 2013. DOI:10.1201/b15734-10

Wirawan E, Vanden Berghe TV, Lippens S, Agostinis P, Vandenabeele P. Autophagy: for better or for worse. Cell Res. 2012 Jan;22(1):43-61. doi: 10.1038/cr.2011.152.

Zhang He Gao LYZYWM, Siyue Chen Dazhong JWXKZ, Ye GWenqian ZY, Zhirong G. Salinomycin-loaded PEG-ceramide micelle, preparation method and application thereof; 2015.

Xiaoliwang Junjiezhou ZZR, Xingyan Guanglinliu. Folic acid coupled polyethylene glycol monostearate and its preparation method and application; 2012.

Published

07-07-2022

How to Cite

RAJ R., G., S., P., PATIL, A. B., JAIN, V., & AJMEER, R. (2022). A REVIEW OF ADVANCED NANOTECHNOLOGIES AND DRUG DELIVERY SYSTEMS OF SALINOMYCIN AND THEIR ROLE IN TRIPLE-NEGATIVE BREAST CANCER. International Journal of Applied Pharmaceutics, 14(4), 103–114. https://doi.org/10.22159/ijap.2022v14i4.44237

Issue

Section

Review Article(s)