DEVELOPMENT OF CATHELICIDIN IN LIPOSOME CARRIER USING THIN LAYER HYDRATION METHOD

Authors

  • ANIS YOHANA CHAERUNISAA Faculty of Pharmacy, Universitas Padjadjaran, ln Raya Bandung Sumedang KM 21, Sumedang 45363, West Java Indonesia https://orcid.org/0000-0002-4985-8206
  • MAYANG KUSUMA DEWI Faculty of Pharmacy, Universitas Padjadjaran, ln Raya Bandung Sumedang KM 21, Sumedang 45363, West Java Indonesia
  • SRIWIDODO Faculty of Pharmacy, Universitas Padjadjaran, ln Raya Bandung Sumedang KM 21, Sumedang 45363, West Java Indonesia https://orcid.org/0000-0003-3049-8375
  • I. MADE JONI Faculty of Pharmacy, Universitas Padjadjaran, ln Raya Bandung Sumedang KM 21, Sumedang 45363, West Java Indonesia https://orcid.org/0000-0001-5949-3418
  • REIVA FARAH DWIYANA Faculty of Pharmacy, Universitas Padjadjaran, ln Raya Bandung Sumedang KM 21, Sumedang 45363, West Java Indonesia https://orcid.org/0000-0001-9350-0239

DOI:

https://doi.org/10.22159/ijap.2022v14i4.44480

Keywords:

Cathelicidin, liposomes, Thin layer hydration

Abstract

Objective: The purpose of this study was to produce an optimum liposome formulation and to study the effect of formulation parameter such as phospholipid amount and hydration time on characteristics of liposome containing Cathelichidin.

Methods: Liposomes were prepared using a thin layer hydration method. Characterization of liposomes included organoleptic, PSA (Particle Size Analyzer) and zeta potential, entrapment efficiency, morphology by TEM (Transmission Electron Microscopy), the chemical interaction by FTIR (Fourier Transform Infrared Spectroscopy), and the stability by using Freeze-Thaw method.

Results: The result of the organoleptic test showed that the liposome were in the form of milky white dispersion, odorless, and without sedimentation. Optimum formula was obtained by making variations of soy oil: cholesterol 10: 0 (F1), 9: 1 (F2), 8: 2 (F3), 7: 3 (F4), and variations in sonication time (10 and 30 min). Based on the results, it was found that the optimum sonication time was 30 min. F2 and F3 were chosen as the most optimum formulas with particle sizes of 190.3±6.8 nm and 212.9±4.4 nm; polydispersity index of 0.192±0.023 and 0.137±0.022, and zeta potential as much as-38.8±0.6 mV and-34.8±2.0 mV. To the optimum formula, cathelicidin was loaded with hydration time varies of 100 and 120 min. Longer hydration time resulted in smaller particle size and higher entrapment efficiency either for F2 or F3. TEM characterization revealed a spherical shape of liposomes from the optimum formula. The results of FTIR characterization did not show any interaction between the phospholipids of liposomes with cathelicidin. The data from the stability test showed good stability for F2 and F3 with a hydration time of 120 min, indicated by a p-value>0.05, which indicated that there was no significant change in the zeta potential for three Freeze-Thaw cycles.

Conclusion: Formula of liposom using a variation of soy oil: cholesterol 9:1 and 8:2 with hydration time of 120 min revealed the best result with good stability for three Freeze-Thaw cycles.

Downloads

Download data is not yet available.

References

Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol. Jan 2004;75(1):39-48. doi: 10.1189/jlb.0403147, PMID 12960280.

Garcia Orue I, Gainza G, Girbau C, Alonso R, Aguirre JJ, Pedraz JL. LL37 loaded nanostructured lipid carriers (NLC): A new strategy for the topical treatment of chronic wounds. Eur J Pharm Biopharm. Nov 2016;108:310-6. doi: 10.1016/j.ejpb.2016.04.006. PMID 27080206.

Zaiou M, Nizet V, Gallo RL. Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/lL-37) pro sequence. J Invest Dermatol. 2003 May;120(5):810-6. doi: 10.1046/j.1523-1747.2003.12132.x. PMID 12713586.

Oren Z, Shai Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers. 1998;47(6):451-63. doi: 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F, PMID 10333737.

Danenberg HD, Fishbein I, Epstein H, Waltenberger J, Moerman E, Monkkonen J. Systemic depletion of macrophages by liposomal bisphosphonates reduces neointimal formation following balloon-injury in the rat carotid artery. J Cardiovasc Pharmacol. 2003;42(5):671-9. doi: 10.1097/00005344-200311000-00014, PMID 14576517.

Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006 Dec;24(12):1551-7. doi: 10.1038/nbt1267, PMID 17160061.

Eckert R. Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol. 2011 Jun;6(6):635-51. doi: 10.2217/fmb.11.27, PMID 21707311.

Mahlapuu M, Hakansson J, Ringstad L, Bjorn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016 Dec;6:194. doi: 10.3389/fcimb.2016.00194, PMID 28083516.

Nordstrom R, Malmsten M. Delivery systems for antimicrobial peptides. Adv Colloid Interface Sci. 2017 Apr;242:17-34. doi: 10.1016/j.cis.2017.01.005. PMID 28159168.

Gottemukkula LD, Sampathi S. Snedds as lipid-based nanocarrier systems: concepts and formulation insights. Int J App Pharm. 2022;14(2):1-9. doi: 10.22159/ijap.2022v14i2.42930.

Asadujjaman Md, Mishuk AU. Novel approaches in lipid-based drug delivery systems. J Drug Delivery Ther. 2013;3(4). doi: 10.22270/jddt.v3i4.578.

Chou HT, Kuo TY, Chiang JC, Pei MJ, Yang WT, Yu HC. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int J Antimicrob Agents. 2008 Aug;32(2):130-8. doi: 10.1016/j.ijantimicag. 2008.04.003. PMID 18586467.

Umerska A, Cassisa V, Bastiat G, Matougui N, Nehme H, Manero F. Synergistic interactions between antimicrobial peptides derived from plectasin and lipid nanocapsules containing monolaurin as a cosurfactant against staphylococcus aureus. Int J Nanomedicine. 2017 Aug;12:5687-99. doi: 10.2147/IJN.S139625. PMID 28848347.

Sun L, Zheng C, Webster TJ. Self-assembled peptide nanomaterials for biomedical applications: promises and pitfalls. Int J Nanomedicine. 2017;12:73-86. doi: 10.2147/IJN.S117501. PMID 28053525.

Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017 Feb;12:1227-49. doi: 10.2147/IJN.S121956. PMID 28243086.

Padmasree M, Vishwanath BA. Development and characterization of pegylated capecitabine liposomal formulations with anticancer activity towards colon CANCERcancer. Int J App Pharm. 2022;14(2):135-42. doi: 10.22159/ijap.2022v14i2.43658.

Rosenfeld Y, Papo N, Shai Y. Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action. J Biol Chem. 2006 Jan;281(3):1636-43. doi: 10.1074/jbc.M504327200. PMID 16293630.

Ron Doitch S. Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. J Control Release. 2016 May;229:163-71. doi: 10.1016/j.jconrel.2016.03.025, PMID 27012977.

Chauhan AS, Pandey K, Girijesh AJ, Dubey B, Jain P. A review on ethosome: A novel drug delivery system for topical fungal disease. The Pharm Innov J. 2018;7(12):355-62.

HC Korting, Schafer Korting M. Carriers in the topical treatment of skin disease. In. Drug delivery h and b exp pharmacol. Berlin, Heidelberg: Springer. 2010;197:435-68. doi: 10.1007/978-3-642-00477-3_15, PMID 20217539.

D Verma, Verma S, Blume G, Fahr A. Particle size of liposomes influences dermal delivery of substances into skin. International Journal of Pharmaceutics. Jun 2003;258(1-2):141-51. doi: 10.1016/S0378-5173(03)00183-2, PMID 12753761.

McCrudden MTC, McLean DTF, Zhou M, Shaw J, Linden GJ, Irwin CR. The host defence peptide LL-37 is susceptible to proteolytic degradation by wound fluid isolated from foot ulcers of diabetic patients. International Journal of Peptide Research and Therapeutics. 2014 Dec;20(4):457-64. doi: 10.1007/s10989-014-9410-3.

Yeo LK, Chaw CS, Elkordy AA. The effects of hydration parameters and co-surfactants on methylene blue-loaded niosomes prepared by the thin-film hydration method. Pharmaceuticals (Basel). 2019;12(2):46. doi: 10.3390/ph12020046, PMID 30934834.

Goniotaki M, Hatziantoniou S, Dimas K, Wagner M, Demetzos C. Encapsulation of naturally occurring flavonoids into liposomes: physicochemical properties and biological activity against human cancer cell lines. Journal of Pharmacy and Pharmacology. 2004 Oct;56(10):1217-24. doi: 10.1211/0022357044382, PMID 15482635.

Sadeghi S, Bakhshandeh H, Ahangari Cohan R, Peirovi A, Ehsani P, Norouzian D. Synergistic anti-staphylococcal activity of niosomal recombinant lysostaphin-L-37. International Journal of Nanomedicine. 2019 Dec;14:9777-92. doi: 10.2147/IJN.S230269. PMID 31849468.

Ruozi B, Belletti D, Tombesi A, Tosi G, Bondioli L, Forni F. AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study. International Journal of Nanomedicine. 2011 Mar;6:557-63. doi: 10.2147/IJN.S14615. PMID 21468358.

Abbouni S. Microencapsulation of LL-37 antimicrobial peptide in PLGA; 2016.

Yang S, Liu C, Liu W, Yu H, Zheng H, Zhou W. Preparation and characterization of nanoliposomes entrapping medium-chain fatty acids and vitamin C by lyophilization. International Journal of Molecular Sciences. 2013 Sep;14(10):19763-73. doi: 10.3390/ijms141019763, PMID 24084723.

Putri DCA, Dwiastuti R, Marchaban M, Nugroho AK. Ptimization of mixing temperature and sonication duration in a liposome preparation. J Pharm Sci Community. 2017 Nov;14(2):79-85. doi: 10.24071/jpsc.142728.

Raval N, Maheshwari R, Kalyane D, Youngren-Ortiz SR, Chougule MB, Tekade RK. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In: Basic fundamentals of drug delivery. Elsevier; 2019. p. 369-400. doi: 10.1016/B978-0-12-817909-3.00010-8.

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018 May;10(2):57. doi: 10.3390/pharmaceutics10020057, PMID 29783687.

Kumar A, Dixit CK. Methods for characterization of nanoparticles. In: Advances in nanomedicine for the delivery of therapeutic nucleic acids. Elsevier; 2017. p. 43-58. doi: 10.1016/B978-0-08-100557-6.00003-1.

Pezeshky A, Ghanbarzadeh B, Hamishehkar H, Moghadam M, Babazadeh A. Vitamin A palmitate-bearing nanoliposomes: preparation and characterization. Food Bioscience. 2016 Mar;13:49-55. doi: 10.1016/j.fbio.2015.12.002. fbio. 2015.12.002.

Merck. IR Spectrum table by frequency range; 2021. https://www.sigmaaldrich/technical-documents/articles/ biology/ ir-spectrum-table.html.

Gupta U, Vivek K. Singh V, Kumar V, Khajuria Y. Spectroscopic studies of cholesterol: Fourier transform infra-red and vibrational frequency analysis. Materials Focus. 2014 Jun;3(3):211-7. doi: 10.1166/mat.2014.1161.

Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta. 2007;1767(9):1073-101. doi: 10.1016/j.bbabio.2007. 06.004. PMID 17692815.

Published

07-07-2022

How to Cite

CHAERUNISAA, A. Y., DEWI, M. K., SRIWIDODO, JONI, I. M., & DWIYANA, R. F. (2022). DEVELOPMENT OF CATHELICIDIN IN LIPOSOME CARRIER USING THIN LAYER HYDRATION METHOD. International Journal of Applied Pharmaceutics, 14(4), 178–185. https://doi.org/10.22159/ijap.2022v14i4.44480

Issue

Section

Original Article(s)

Most read articles by the same author(s)