OVERVIEW OF PECTIN AS AN EXCIPIENT AND ITS USE IN THE PHARMACEUTICAL DOSAGE FORM

Authors

  • IYAN SOPYAN Department of Pharmacutics and Technology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia, Dosage Form Development Research Center, Faculty of Pharmacy, Universitas Padjadjaan, Bandung, Indonesia https://orcid.org/0000-0001-7616-5176
  • DOLIH GOZALI Department of Pharmacutics and Technology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
  • INSAN SUNAN K. S. Department of Pharmacutics and Technology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
  • RIZKA KHOIRUNNISA GUNTINA Department of Pharmacutics and Technology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia https://orcid.org/0000-0001-7616-5176

DOI:

https://doi.org/10.22159/ijap.2022v14i4.45091

Keywords:

Pectin, Composit pectin, Drugs delivery system, Dosage form

Abstract

Pectin is a polysaccharide that is abundant in nature and has promising uses in the pharmaceutical field. Pectin is resistant to digestive enzymes but pectin gel can swell in aqueous media and small amounts of compounds can be released into the gastrointestinal tract. This problem can be solved by developing pectin composites obtained from the incorporation of pectin polymers with other polymers. This article discusses the interaction of pectin with other polymers in various drug delivery systems. The method used in review articles is to review nationally and internationally published scientific journals obtained from Google, Google Scholar, Pubmed and Science Direct. From several related studies, delivery systems that have been developed and reported in the form of films, hydrogels, particulate systems and tablets. Other polymers such as Alginatee, protein, chitosan, gelatin and starch are known to improve the properties of pectin so that pectin composites can be used as controlled drug delivery. Thus, the development of other drug delivery systems with pectin composites becomes an opportunity and challenge in the future.

Downloads

Download data is not yet available.

References

Udgil D. The interaction between insoluble and soluble fiber in dietary fiber for the prevention of cardiovascular disease: Fiber’s interaction between gut Mico flora, sugar metabolism. Weight Control Cardiovascular Health. 2017:35-59. doi: 10.1016/B978-0-12-805130-6.00003-3.

Antony A. A review on pectin: chemistry due to general properties of pectin and its pharmaceutical uses. Sci Rep. 2012;553(1):1-3. doi: 10.4172/scientific reports.

Martau GA, Mihai M, Vodnar DC. The use of chitosan, alginate, and pectin in the biomedical and food sector-biocompatibility, bioadhesiveness, and biodegradability. Polymers. 2019;11(11):1837. doi: 10.3390/polym11111837, PMID 31717269.

Meneguin AB, Cury BSF, Evangelista RC. Films from resistant starch-pectin dispersions intended for colonic drug delivery carbohydr. Polym. 2014;99:140-9. doi: 10.1016/ j.carbpol.2013.07.077.

Jain D, Bar-Shalom D. Alginate drug delivery systems: application in the context of pharmaceutical and biomedical research. Drug Dev Ind Pharm. 2014;40(12):1576-84. doi: 10.3109/03639045.2014.917657, PMID 25109399.

Elzoghby AO, Abo El-Fotoh WS, Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. Journal of Controlled Release. 2011;153(3):206-16. doi: 10.1016/j.jconrel.2011.02.010.

Cheung RCF, Ng TB, Wong JH, Chan WY. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs. 2015;13(8):5156-86. doi: 10.3390/md13085156, PMID 26287217.

Hanna DH, Saad GR. Encapsulation of ciprofloxacin within modified xanthan gum-chitosan-based hydrogel for drug delivery. Bioorg Chem. 2019;84:115-24. PMID 30500521.

Parker NG, Povey MJW. Ultrasonic study of the gelation of gelatin: phase diagram, hysteresis and kinetics. Food Hydrocoll. 2012;26(1):99-107. doi: 10.1016/j.foodhyd.2011.04.016.

Yang J, Huang Y, Gao C, Liu M, Zhang X. Fabrication and evaluation of the novel reduction-sensitive starch nanoparticles for controlled drug release. Colloids Surf B Biointerfaces. 2014;115:368-76. doi: 10.1016/ j.colsurfb.2013.12.007. PMID 24463097.

Lara-espinoza C, Carvajal Millan E, Balandran Quintana R, Lopez Franco Y, Rascon Chu A. Pectin and pectin-based composite materials: beyond food texture. Molecules. 2018;23(4):E942. doi: 10.3390/molecules23040942. PMID 29670040.

Palin R, Geitmann A. The role of pectin in plant morphogenesis. Biosystems. 2012;109(3):397-402. doi: 10.1016/j.biosystems.2012.04.006, PMID 22554809.

Kaya M, Sousa AG, Crepeau MJ, Sørensen SO, Ralet MC. Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction. Ann Bot. 2014;114(6):1319-26. doi: 10.1093/aob/mcu150, PMID 25081519.

Geerkens CH. Mango pectin quality as influenced by cultivar, ripeness, peel particle size, blanching, drying, and irradiation. Food Hydrocoll. 2015;51:241-51. doi: 10.1016/j.foodhyd.2015.05.022.

Yapo BM, Koffi KL. Extraction and characterization of highly gelling low methoxy pectin from cashew apple pomace. Foods. 2013;3(1):1-12. doi: 10.3390/foods3010001, PMID 28234301.

Twinomuhwezi H, Awuchi C, Kahunde D. Extraction and characterization of pectin from orange (Citrus sinensis), lemon (Citrus limon) and tangerine (Citrus tangerina). American Journal of Physical Sciences 2020;1:17-30.

Khamsucharit P, Laohaphatanalert K, Gavinlertvatana P, Sriroth K, Sangseethong K. Characterization of pectin extracted from banana peels of different varieties. Food Sci Biotechnol. 2018;27(3):623-9. doi: 10.1007/s10068-017-0302-0, PMID 30263788.

Ma S, Yu SJ, Zheng XL, Wang XX, Bao QD, Guo XM. Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydr Polym. 2013;98(1):750-3. doi: 10.1016/j.carbpol.2013.06.042, PMID 23987408.

Yang JS, Mu TH, Ma MM. Extraction, structure, and emulsifying properties of pectin from potato pulp. Food Chem. 2018;244:197-205. doi: 10.1016/j.foodchem.2017.10.059, PMID 29120771.

Begum R, Aziz MG, Uddin MB, Yusof YA. Characterization of Jackfruit (Artocarpus heterophyllus) waste pectin as influenced by various extraction conditions. Agric Agric Sci Procedia. 2014;2:244-51. doi: 10.1016/j.aaspro.2014.11.035.

Grassino AN, Brncic M, Vikic Topic D, Roca S, Dent M, Brncic SR. Ultrasound-assisted extraction and characterization of pectin from tomato waste. Food Chem. 2016;198:93-100. doi: 10.1016/j.foodchem.2015.11.095, PMID 26769509.

Narasimman P, Sethuraman P. An overview on the fundamentals of pectin. Int J Adv Res 2016;4(12):1855-60. doi: 10.21474/IJAR01/2593.

Giacomazza D, Bulone D, San Biagio PL, Marino R, Lapasin R. The role of sucrose concentration in self-assembly kinetics of high methoxyl pectin. Int J Biol Macromol. 2018;112:1183-90. doi: 10.1016/j.ijbiomac.2018.02.103. PMID 29454951

Zaid RM, Mishra P, Tabassum S, Wahid ZA, Sakinah AMM. High methoxyl pectin extracts from Hylocereus polyrhizus’s peels: extraction kinetics and thermodynamic studies. Int J Biol Macromol. 2019;141:1147-57. doi: 10.1016/j.ijbiomac.2019.09.017, PMID 31494156.

Han W. Mathematical model of Ca2+concentration, pH, pectin concentration and soluble solids (sucrose) on the gelation of low methoxyl pectin. Food Hydrocoll. 2017;66:37-48. doi: 10.1016/j.foodhyd.2016.12.011.

Wan L, Yang Z, Cai R, Pan S, Liu F, Pan S. Calcium-induced-gel properties for low methoxyl pectin in the presence of different sugar alcohols. Food Hydrocoll. 2021;112. doi: 10.1016/j.foodhyd.2020.106252.

Kiaei Pour P, Alemzadeh I, Vaziri AS, Beiroti A. Potential effects of alginate-pectin biocomposite on the release of folic acid and their physicochemical characteristics. J Food Sci Technol. 2020;57(9):3363-70. doi: 10.1007/s13197-020-04369-7, PMID 32728283.

Galus S, Lenart A. Development and characterization of composite edible films based on sodium alginate and pectin. J Food Eng. 2013;115(4):459-65. doi: 10.1016/j.jfoodeng.2012.03.006.

Seixas FL, Turbiani F, Salomao FG, Souza RP, Gimenes ML. Biofilms composed of alginate and pectin: effect of concentration of crosslinker and plasticizer agents. Chem Eng Trans. 2013;32:1693-8. doi: 10.3303/CET1332283.

Hsu FY, Yu DS, Huang CC. Development of pH-sensitive pectinate/alginate microspheres for colon drug delivery. J Mater Sci Mater Med. 2013;24(2):317-23. doi: 10.1007/s10856-012-4798-9, PMID 23104086.

Belscak A-Cvitanovic. Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocoll. 2016:C(57):139-52. doi: 10.1016/j.foodhyd.2016.01.020.

Neufeld L, Bianco Peled H. Pectin-chitosan physical hydrogels as potential drug delivery vehicles. Int J Biol Macromol. 2017;101:852-61. doi: 10.1016/j.ijbiomac.2017.03.167, PMID 28366853.

Rampino A, Borgogna M, Bellich B, Blasi P, Virgilio F, Cesaro A. Chitosan-pectin hybrid nanoparticles prepared by coating and blending techniques. Eur J Pharm Sci. 2016;84:37-45. doi: 10.1016/j.ejps.2016.01.004. PMID 26772898.

Nining N, Elfiyani R, Wulandari E. Comparison eugenol and oleic acid as a plasticizer on the characteristic of dextromethorphan hydrobromide film by solvent casting method. Pharm Sci Asia. 2021;48(2):139-46. doi: 10.29090/psa.2021.02.20.023.

Fahrurroji A, Thendriani D, Riza H. Hesperidin hydrogel formulation using pectin-chitosan polymer combination. Int J Pharm Pharm Sci. 2017;9(12):98-104. doi: 10.22159/ijpps.2017v9i12.19816.

Long J, Etxeberria AE, Nand AV, Bunt CR, Ray S, Seyfoddin A. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater Sci Eng C Mater Biol Appl. 2019;104:109873. doi: 10.1016/j.msec.2019.109873. PMID 31500054.

Puga AM, Lima AC, Mano JF, Concheiro A, Alvarez Lorenzo C. Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation. Carbohydr Polym. 2013;98(1):331-40. doi: 10.1016/j.carbpol.2013.05.091, PMID 23987352.

Khurana R, Singh K, Sapra B, Tiwary AK, Rana V. Tamarindus indica pectin blend film composition for coating tablets with enhanced adhesive force strength. Carbohydr Polym. 2014;102:55-65. doi: 10.1016/j.carbpol.2013.11.005. PMID 24507255.

Pandey S, Mishra A, Raval P, Patel H, Gupta A, Shah D. Chitosan-pectin polyelectrolyte complex as a carrier for colon targeted drug delivery. J Young Pharm. 2013;5(4):160-6. doi: 10.1016/j.jyp.2013.11.002. PMID 24563596.

Cazorla Luna R, Notario Perez F, Martin Illana A, Ruiz Caro R, Tamayo A, Rubio J. Chitosan-based mucoadhesive vaginal tablets for controlled release of the anti-HIV drug tenofovir. Pharmaceutics. 2019;11(1):E20. doi: 10.3390/pharmaceutics11010020, PMID 30621307.

Birch NP, Schiffman JD. Characterization of self-assembled polyelectrolyte complex nanoparticles formed from chitosan and pectin. Langmuir. 2014;30(12):3441-7. doi: 10.1021/la500491c, PMID 24593694.

Chang C, Wang T, Hu Q, Zhou M, Xue J, Luo Y. Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin. Food Hydrocoll. 2017;70:143-51. doi: 10.1016/j.foodhyd.2017.03.033.

Baracat MM, Nakagawa AM, Casagrande R, Georgetti SR, Verri WA, de Freitas O. Preparation and characterization of microcapsules based on biodegradable polymers: pectin/casein complex for controlled drug release systems. AAPS PharmSciTech. 2012;13(2):364-72. doi: 10.1208/s12249-012-9752-0, PMID 22322381.

Wang T, Hu Q, Zhou M, Xia Y, Nieh MP, Luo Y. Development of ’All Natural’ Layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology. Eur J Pharm Biopharm. 2016;107:273-85. doi: 10.1016/j.ejpb.2016.07.022.

Silva DF, Favaro Trindade CS, Rocha GA, Thomazini M. Microencapsulation of lycopene by gelatin–pectin complex coacervation. J Food Process Preserv. 2012;36(2):185-90. doi: 10.1111/j.1745-4549.2011.00575.x.

Tummalapalli M, Berthet M, Verrier B, Deopura BL, Alam MS, Gupta B. Drug loaded composite oxidized pectin and gelatin networks for accelerated wound healing. Int J Pharm. 2016;505(1-2):234-45. doi: 10.1016/j.ijpharm.2016.04.007. PMID 27063849.

Carbinatto FM, de Castro AD, Evangelista RC, Cury BSF. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian J Pharm Sci. 2014;9(1):27-34. doi: 10.1016/j.ajps.2013.12.002.

Dafe A, Etemadi H, Dilmaghani A, Mahdavinia GR. Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. Int J Biol Macromol. 2017;97:536-43. doi: 10.1016/j.ijbiomac.2017.01.060, PMID 28108413.

Liu Y. Starch pectin matrices for encapsulation of ascorbic acid [diss]. Theses Stud Res Food Sci Technol. May 2014. Available from: https://digitalcommons.unl.edu/foodscidiss/41. [Last accessed on 06 Jun 2022]

Soares GA, de Castro AD, Cury BS, Evangelista RC. Blends of cross-linked high amylose starch/pectin loaded with diclofenac. Carbohydr Polym. 2013;91(1):135-42. doi: 10.1016/j.carbpol.2012.08.014. PMID 23044114.

Alborzi S, Lim L, Kakuda Y. Release of folic acid from sodium alginate-pectin-poly(ethylene oxide) electrospun fibers under in vitro conditions. LWT- Food Science and Technology. 2014;59(1):383-8. doi: 10.1016/j.lwt.2014.06.008.

Jindal M, Kumar V, Rana V, Tiwary AK. An insight into the properties of Aegle marmelos pectin-chitosan cross-linked films. Int J Biol Macromol. 2013;52:77-84. doi: 10.1016/j.ijbiomac.2012.10.020. PMID 23107804.

Kowalonek J. Studies of chitosan/pectin complexes exposed to UV radiation. Int J Biol Macromol. 2017;103:515-24. doi: 10.1016/j.ijbiomac.2017.05.081, PMID 28527987.

Recillas M, Silva LL, Peniche C, Goycoolea FM, Rinaudo M, Roman JS. Thermo- and pH-responsive polyelectrolyte complex membranes from chitosan-g-N-isopropylacrylamide and pectin. Carbohydr Polym. 2011;86(3):1336-43. doi: 10.1016/j.carbpol.2011.06.047.

Alvarez Lorenzo C, Blanco Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev. 2013;65(9):1148-71. doi: 10.1016/j.addr.2013.04.016, PMID 23639519.

Li W. Pectin-chitosan complex: preparation and application in colon-specific capsule. Int J Agric Biol Eng. 2105:8(4). doi: 10.25165/ijabe.v8i4.1512.

Wusigale L, Liang L, Luo Y. Casein and pectin: structures, interactions, and applications. Trends in Food Science & Technology. 2020;97:391-403. doi: 10.1016/j.tifs.2020.01.027.

Rodríguez Patino JM, Pilosof AMR. Protein-polysaccharide interactions at fluid interfaces. Food Hydrocoll. 2011;25(8):1925-37. doi: 10.1016/j.foodhyd.2011.02.023.

Li X, Fang Y, Al-Assaf S, Phillips GO, Jiang F. Complexation of bovine serum albumin and sugar beet pectin: stabilising oil-in-water emulsions. J Colloid Interface Sci. 2012;388(1):103-11. doi: 10.1016/j.jcis.2012.08.018. PMID 22975397.

Huang S, Tu Z, Sha X, Wang H, Hu Y, Hu Z. Gelling properties and interaction analysis of fish gelatin–low-methoxyl pectin system with different concentrations of Ca2+. LWT. 2020;132:2020.109826. doi: 10.1016/j.lwt.2020.109826.

Shewan HM, Stokes JR. Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. J Food Eng. 2013;119(4):781-92. doi: 10.1016/j.jfoodeng.2013.06.046.

Farres IF, Moakes RJA, Norton IT. Designing biopolymer fluid gels: A microstructural approach. Food Hydrocoll. 2014;3(42):362-72. doi: 10.1016/j.foodhyd.2014.03.014.

Wu B, McClements DJ. Functional hydrogel microspheres: parameters affecting electrostatic assembly of biopolymer particles fabricated from gelatin and pectin. Food Res Int. 2015;72:231-40. doi: 10.1016/j.foodres.2015.02.028.

Gupta B, Tummalapalli M, Deopura BL, Alam MS. Preparation and characterization of in-situ crosslinked pectin-gelatin hydrogels. Carbohydr Polym. 2014;106:312-8. doi: 10.1016/j.carbpol.2014.02.019, PMID 24721084.

VSL, Menon RB, Raju K, MUA, C Nair S. Formulation and evaluation of lorazepam encapsulated collagen/pectin buccal patch. Int J App Pharm. 2019;11(5):200-9. doi: 10.22159/ijap.2019v11i5.34366.

Shalini B, Ruban Kumar A. Preparation and characterisation of gelatin blend pectin encapsulated hydroxyapatite (Ca10(OH)2 (PO4)6) nanoparticles using precipitation method mater. Today Proc. 2019;8:245-9. doi: 10.1016/j.matpr.2019.02.107.

Gałkowska D, Długosz M, Juszczak L. Effect of high methoxy pectin and sucrose on pasting, rheological, and textural properties of modified starch systems. Starch/Starke. 2013;65(5-6):499-508. doi: 10.1002/star.201200148.

Pan Y, Xie XT, Li XM, Zhang B, Chen HQ. Evaluation studies on effects of pectin with different concentrations on the pasting, rheological and digestibility properties of corn starch. MaY-S. Food Chem. 2019;274:319-23. doi: 10.1016/j.foodchem.2018.09.005.

Carbinatto FM, de Castro AD, Cury BSF, Magalhaes A, Evangelista RC. Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate. Int J Pharm. 2012;423(2):281-8. doi: 10.1016/j.ijpharm.2011.11.042, PMID 22178896.

Rezvanian M, Ahmad N, Mohd Amin MC, Ng SF. Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int J Biol Macromol. 2017;97:131-40. doi: 10.1016/j.ijbiomac.2016.12.079. PMID 28064048.

Islan GA, De Verti IP, Marchetti SG, Castro GR. Studies of ciprofloxacin encapsulation on alginate/pectin matrixes and its relationship with biodisponibility. Appl Biochem Biotechnol. 2012;167(5):1408-20. doi: 10.1007/s12010-012-9610-2, PMID 22371066.

Sopyan I, Wahyuningrum R, KS IS. An experimental design in the optimization of various tablet excipient formulations- a concise review. Int J App Pharm 2022;14:28-32. doi: 10.22159/ijap.2022v14i1.43380.

Published

07-07-2022

How to Cite

SOPYAN, I., GOZALI, D., K. S., I. S., & GUNTINA, R. K. (2022). OVERVIEW OF PECTIN AS AN EXCIPIENT AND ITS USE IN THE PHARMACEUTICAL DOSAGE FORM. International Journal of Applied Pharmaceutics, 14(4), 64–70. https://doi.org/10.22159/ijap.2022v14i4.45091

Issue

Section

Review Article(s)

Most read articles by the same author(s)

<< < 1 2 3 > >>