PRELIMINARY STUDY FOR COVID-19 DRUG DISCOVERY OF 30 PHYTOCHEMICAL COMPOUNDS FROM TETRAGONULA SP. PROPOLIS AS PAK1 INHIBITOR THROUGH MOLECULAR DOCKING

Authors

  • SAFIRA CANDRA ASIH Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia
  • MUHAMAD SAHLAN Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia, Research Center for Biomedical Engineering, Universitas Indonesia, Depok, 16424, Indonesia
  • MOHAMMAD NASIKIN Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia

DOI:

https://doi.org/10.22159/ijap.2022.v14s3.25

Keywords:

PAK1, Propolis, Tetragonula Sp., COVID

Abstract

Objective: This study aims to evaluate 30 phytochemical compounds from Tetragonula sp. propolis as a PAK1 inhibitor using molecular docking.

Methods: Thirty propolis compounds were initially confirmed before docking to comply with Lipinski rules. This simulation was performed against PAK1 using AutodockVina, while interaction profile visualization was conducted between the ligand and receptor through Ligplot+and PyMol.

Results: Based on the docking score, inhibition constants, and interaction profile analyses, glyurallin B, glyasperin A, and broussoflavonol F were found to be the most potent compounds used as PAK1 inhibitors. According to several literature studies, the propolis compounds were synergistic, leading to adequate collective utilization.

Conclusion: These results implicated the potentials of Tetragonula sp. propolis as a therapeutic agent against COVID-19; however, further studies are still needed.

Downloads

Download data is not yet available.

References

World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report. Available from: https://www.who.int. [Last accessed on 01 Dec 2021]

Kumar D, Chauhan G, Kalra S, Kumar B, Gill MS. A perspective on potential target proteins of COVID-19: comparison with SARS-CoV for designing new small molecules. Bioorg Chem. 2020;104:104326. doi: 10.1016/j.bioorg.2020.104326, PMID 33142431.

Lengauer T, Rarey M. Computational methods for biomolecular docking. Curr Opin Struct Biol. 1996;6(3):402-6. doi: 10.1016/s0959-440x(96)80061-3, PMID 8804827.

Chaudhary K, Mishra N. A review on molecular docking: a novel tool for drug discovery. JSM Chem. 2016;4(2):1029.

Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331. doi: 10.3390/ijms20184331, PMID 31487867.

Lu S, Strand KA, Mutryn MF, Tucker RM, Jolly AJ, Furgeson SB. PTEN (phosphatase and tensin homolog) protects against Ang II (angiotensin II)-induced pathological vascular fibrosis and remodeling-brief report. Arterioscler Thromb Vasc Biol. 2020;40(2):394-403. doi: 10.1161/ATVBAHA.119.313757, PMID 31852223.

Chen IY, Chang SC, Wu HY, Yu TC, Wei WC, Lin S. Upregulation of the chemokine (C-C motif) ligand 2 via a severe acute respiratory syndrome coronavirus spike-ACE2 signaling pathway. J Virol. 2010;84(15):7703-12. doi: 10.1128/JVI.02560-09, PMID 20484496.

Chu CK, Gadthula S, Chen X, Choo H, Olgen S, Barnard DL. Antiviral activity of nucleoside analogues against SARS-coronavirus (SARS-CoV). Antivir Chem Chemother. 2006;17(5):285-9. doi: 10.1177/095632020601700506, PMID 17176633.

Scorza CA. Propolis and coronavirus disease. 2019 (COVID-19): Lessons from nature. Complement Ther Clin Pract 2020;41:101227.

Berretta AA, Silveira MAD, Condor Capcha JM, De Jong D. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease: running title: propolis against SARS-CoV-2 infection and COVID-19. Biomed Pharmacother. 2020;131:110622. doi: 10.1016/j.biopha.2020.110622, PMID 32890967.

Dimitri B, Katerina D, Viktor S, Maja D. Back to the basics: propolis and COVID-19. Dermathol Ther. 2020;33:4.

Sahlan M, Irdiani R, Flamandita D, Aditama R, Alfarraj S, Ansari MJ. Molecular interaction analysis of sulawesi propolis compounds with SARS-CoV-2 main protease as a preliminary study for COVID-19 drug discovery. J King Saud Univ Sci. 2021;33(1):101234. doi: 10.1016/j.jksus.2020.101234. PMID 33223766.

Miyata R, Sahlan M, Ishikawa Y, Hashimoto H, Honda S, Kumazawa S. Propolis components from stingless bees collected on south Sulawesi, Indonesia, and their xanthine oxidase inhibitory activity. J Nat Prod. 2019;82(2):205-10. doi: 10.1021/acs.jnatprod.8b00541, PMID 30719922.

Cole JC, Murray CW, Nissink JW, Taylor RD, Taylor R. Comparing protein-ligand docking programs is difficult. Proteins. 2005;60(3):325-32. doi: 10.1002/prot.20497, PMID 15937897.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26. doi: 10.1016/s0169-409x(00)00129-0. PMID 11259830.

Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615-23. doi: 10.1021/jm020017n, PMID 12036371.

Quimque MTJ, Notarte KIR, Fernandez RAT, Mendoza MAO, Liman RAD, Lim JAK. Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication, post-translational modification and host immunity evasion infection mechanisms. J Biomol Struct Dyn. 2021;39(12):4316-33. doi: 10.1080/07391102.2020.1776639.

Swiss ADME. A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-61. doi: 10.1002/jcc.21334, PMID 19499576.

Sharifi M, Raevsky AV, Ghafourian T. Effect of molecular structure, substrate and docking scores on the prediction of the inhibition constants of P-glycoprotein inhibitors. J Drug Metab Toxicol. 2016;07(4):2. doi: 10.4172/2157-7609.1000217.

Wallace AC, Laskowski RA, Ligplot TJM. A program to generate schematic diagrams of protein-ligand interactions. Protein Eng Design. 1995;8:127-34.

Dannenberg JJ. An introduction to hydrogen bonding by George A. Jeffrey (University of Pittsburgh). Oxford University Press: New York and Oxford. J Am Chem Soc. 1998;120(22):5604. doi: 10.1021/ja9756331.

Shahinozzaman M, Ishii T, Takano R, Halim MA, Hossain MA, Tawata S. Cytotoxic desulfated saponin from Holothuria atra predicted to have high binding affinity to the oncogenic kinase PAK1: A combined in vitro and in silico study. Sci Pharm. 2018;86(3):32. doi: 10.3390/scipharm86030032, PMID 30200330.

Shahinozzaman M, Ishii T, Ahmed S, Halim MA, Tawata S. A computational approach to explore and identify potential herbal inhibitors for the p21-activated kinase 1 (PAK1). J Biomol Struct Dyn. 2020;38(12):3514-26. doi: 10.1080/07391102.2019.1659855, PMID 31448698.

Schroder M, Bullock AN, Fedorov O, Bracher F, Chaikuad A, Knapp S. DFG-1 residue controls inhibitor binding mode and affinity, providing a basis for the rational design of kinase inhibitor selectivity. J Med Chem. 2020;63(18):10224-34. doi: 10.1021/acs.jmedchem.0c00898, PMID 32787076.

Oses SM, Marcos P, Azofra P, de Pablo A, Fernandez Muino MA, Sancho MT. Phenolic profile, antioxidant capacities and enzymatic inhibitory activities of propolis from different geographical areas: needs for analytical harmonization. Antioxidants (Basel). 2020;9(1):75. doi: 10.3390/antiox9010075, PMID 31952253.

Kharsany K, Viljoen A, Leonard C, van Vuuren SV. The new buzz: investigating the antimicrobial interactions between bioactive compounds found in South African propolis. J Ethnopharmacol. 2019;238:111867. doi: 10.1016/j.jep.2019.111867, PMID 30978456.

Al-Waili N, Al-Ghamdi A, Ansari MJ, Al-Attal Y, Salom K. Synergistic effects of honey and propolis toward drug multi-resistant staphylococcus aureus, Escherichia coli and Candida albicans isolates in single and polymicrobial cultures. Int J Med Sci. 2012;9(9):793-800. doi: 10.7150/ijms.4722, PMID 23136543.

Drigla F, Balacescu O, Visan S, Bisboaca SE, Berindan Neagoe I, Marghitas LA. Synergistic effects induced by combined treatments of aqueous extract of propolis and venom. Clujul Med. 2016;89(1):104-9. doi: 10.15386/cjmed-527, PMID 27004032.

Published

28-06-2022

How to Cite

ASIH, S. C., SAHLAN, M., & NASIKIN, M. (2022). PRELIMINARY STUDY FOR COVID-19 DRUG DISCOVERY OF 30 PHYTOCHEMICAL COMPOUNDS FROM TETRAGONULA SP. PROPOLIS AS PAK1 INHIBITOR THROUGH MOLECULAR DOCKING. International Journal of Applied Pharmaceutics, 14(3), 116–122. https://doi.org/10.22159/ijap.2022.v14s3.25

Issue

Section

Original Article(s)

Most read articles by the same author(s)

1 2 > >>