MECHANISM OF ACTION, SYNTHESIS, PROPERTIES AND ANALYTICAL METHODS OF CABOZANTINIB

Authors

  • AKANKSHA DWIVEDI Acropolis Institute of Pharmaceutical Education and Research, Indore, MP
  • RAKHI KHABIYA Acropolis Institute of Pharmaceutical Education and Research, Indore, MP
  • ALANKAR SHRIVASTAVA KIET Group of Institutions (KIET School of Pharmacy), Delhi-NCR, Meerut Road (NH-58), Ghaziabad 201206 https://orcid.org/0000-0003-3284-0445
  • SIDDHARTH TYAGI KIET Group of Institutions (KIET School of Pharmacy), Delhi-NCR, Meerut Road (NH-58), Ghaziabad 201206
  • KANDASAMY NAGARAJAN KIET Group of Institutions (KIET School of Pharmacy), Delhi-NCR, Meerut Road (NH-58), Ghaziabad 201206
  • G. N. DARWHEKAR Acropolis Institute of Pharmaceutical Education and Research, Indore, MP

DOI:

https://doi.org/10.22159/ijap.2023v15i1.46409

Keywords:

Cabozantinib, Cancer, Analytical methods, Spectrophotometry, Chromatography

Abstract

Globally, the burden of cancer is substantial and growing. The impact of the burden of such diseases over society is unpredictable in terms of health lost and cost. Unfortunately, the estimates shown the burden may be increasing in the upcoming decades. Cabozantinib (CBZ) is a newly developed tyrosin kinase inhibitor (TKI) for Differentiated thyroid cancer (DTC), Hepatic Cellular Carcinoma (HCC), Medullary thyroid cancer (MTC) and Renal Cell Carcinoma (RCC). The objective of the presented review is to provide updated knowledge of drugs especially covering analytical methodologies. The review covered the introduction, mechanism of action, pharmacokinetics, synthesis and developed analytical methods by various researchers. The review covered one spectrophotometry and about twenty chromatography methods. The review will be helpful for the scientist working in this area and especially helpful for analytical scientists exploring new analytical methodologies for CBZ.

Downloads

Download data is not yet available.

References

Herbrink M, Nuijen B, Schellens JH, Beijnen JH. Variability in bioavailability of small molecular tyrosine kinase inhibitors. Cancer Treat Rev. 2015;41(5):412-22. doi: 10.1016/j.ctrv.2015.03.005. PMID 25818541.

Cancer. World Health Organization; 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer#:~:text=The%20problem-,Cancer%20is%20a%20leading%20cause%20of%20death%20worldwide%2C%20accounting%20for,lung%20(2.21%20million%20cases)%3B. [Last accessed on 09 Sep 2022]

Hausman DM. What is cancer? Perspect Biol Med. 2019;62(4):778-84. doi: 10.1353/pbm.2019.0046, PMID 31761807.

Roy PS, Saikia BJ. Cancer and cure: A critical analysis. Indian J Cancer. 2016 Jul-Sep;53(3):441-2. doi: 10.4103/0019-509X.200658, PMID 28244479.

National Cancer Institute at the National Institutes of Health; 2020. Available from: https://www.cancer.gov/about-cancer/understanding. [Last accessed on 27 Jun 2022]

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492, PMID 30207593.

Maxwell JE, Sherman SK, O’Dorisio TM, Howe JR. Medical management of metastatic medullary thyroid cancer. Cancer. 2014;120(21):3287-301. doi: 10.1002/cncr.28858, PMID 24942936.

Priya SR, Dravid CS, Digumarti R, Dandekar M. Targeted therapy for medullary thyroid cancer: a review. Front Oncol. 2017;7:238. doi: 10.3389/fonc.2017.00238, PMID 29057215.

Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009. doi: 10.1038/nrdp.2017.9, PMID 28276433.

Elisei R, Schlumberger MJ, Muller SP, Schoffski P, Brose MS, Shah MH. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol. 2013;31(29):3639-46. doi: 10.1200/JCO.2012.48.4659, PMID 24002501.

Schlumberger M, Elisei R, Muller S, Schoffski P, Brose M, Shah M. Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma. Ann Oncol. 2017;28(11):2813-9. doi: 10.1093/annonc/mdx479, PMID 29045520.

Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380(15):1450-62. doi: 10.1056/NEJMra1713263, PMID 30970190.

Veerman GDM, Hussaarts KGAM, Jansman FGA, Koolen SWL, van Leeuwen RWF, Mathijssen RHJ. Clinical implications of food-drug interactions with small-molecule kinase inhibitors. Lancet Oncol. 2020;21(5):e265-79. doi: 10.1016/S1470-2045(20)30069-3, PMID 32359502.

Dimitroulis D, Damaskos C, Valsami S, Davakis S, Garmpis N, Spartalis E. From diagnosis to treatment of hepatocellular carcinoma: an epidemic problem for both developed and developing world. World J Gastroenterol. 2017 Aug 7;23(29):5282-94. doi: 10.3748/wjg.v23.i29.5282. PMID 28839428.

Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018 Mar 31;391(10127):1301-14. doi: 10.1016/S0140-6736(18)30010-2, PMID 29307467.

Chahrour O, Cairns D, Omran Z. Small molecule kinase inhibitors as anti-cancer therapeutics. Mini Rev Med Chem. 2012;12(5):399-411. doi: 10.2174/138955712800493915, PMID 22303944.

Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298-308. doi: 10.1158/1535-7163.MCT-11-0264. PMID 21926191.

Liu H, Sun S, Wang G, Lu M, Zhang X, Wei X. Tyrosine kinase inhibitor cabozantinib inhibits murine renal cancer by activating innate and adaptive immunity. Front Oncol. 2021;11:663517. doi: 10.3389/fonc.2021.663517, PMID 33954115.

Cabozantinib-S-malate. National Cancer Institute. Available from: https://www.cancer.gov/about-cancer/treatment/drugs/cabozantinib-s-malate. [Last accessed on 09 Sep 2022]

PubChem. PubChem Compound Summary for CID 25102847, Cabozantinib. Bethesda: National Library of Medicine (US). National Center for Biotechnology Information; 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Cabozantinib. [Last accessed on 17 Sep 2022]

Food and Drug Administration. CDER clinical pharmacology and biophamaceutics reviews[s] for cabozantinib [COMETRIQ]; 2012. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203756Orig1s000ClinPharmR.pdf. [Last accessed on 17 Sep 2022]

Lacy SA, Miles DR, Nguyen LT. Clinical pharmacokinetics and pharmacodynamics of cabozantinib. Clin Pharmacokinet. 2017;56(5):477-91. doi: 10.1007/s40262-016-0461-9, PMID 27734291.

Schmidinger M, Danesi R. Management of adverse events associated with cabozantinib therapy in renal cell carcinoma. Oncologist. 2018;23(3):306-15. doi: 10.1634/theoncologist.2017-0335, PMID 29146618.

Patel A. Benign vs malignant tumors. JAMA Oncol. 2020;6(9):1488. doi: 10.1001/jamaoncol.2020.2592, PMID 32729930.

Bhullar KS, Lagaron NO, McGowan EM, Parmar I, Jha A, Hubbard BP. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 2018;17(1):48. doi: 10.1186/s12943-018-0804-2, PMID 29455673.

Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2022 update. Pharmacol Res. 2022;175:106037. doi: 10.1016/j.phrs.2021.106037. PMID 34921994.

Damghani T, Moosavi F, Khoshneviszadeh M, Mortazavi M, Pirhadi S, Kayani Z. Imidazopyridine hydrazone derivatives exert an antiproliferative effect on lung and pancreatic cancer cells and potentially inhibit receptor tyrosine kinases including c-Met. Sci Rep. 2021;11(1):3644. doi: 10.1038/s41598-021-83069-4, PMID 33574356.

Roskoski R. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol Res. 2016;103:26-48. doi: 10.1016/j.phrs.2015.10.021. PMID 26529477.

Hara T, Kimura A, Miyazaki T, Tanaka H, Morimoto M, Nakai K. Cabozantinib inhibits AXL- and MET-dependent cancer cell migration induced by growth-arrest-specific 6 and hepatocyte growth factor. Biochem Biophys Rep. 2020;21:100726. doi: 10.1016/j.bbrep.2020.100726. PMID 32055714.

Naresh GKRS, Guruprasad L. Enhanced metastable state models of TAM kinase binding to cabozantinib explains the dynamic nature of receptor tyrosine kinases. J Biomol Struct Dyn. 2021;39(4):1213-35. doi: 10.1080/07391102.2020.1730968, PMID 32070235.

Grullich C. Cabozantinib: a MET, RET, and VEGFR2 tyrosine kinase inhibitor. Recent Results Cancer Res. 2014;201:207-14. doi: 10.1007/978-3-642-54490-3_12, PMID 24756794.

Wiechno P, Kucharz J, Sadowska M, Michalski W, Sikora Kupis B, Jonska-Gmyrek J. Contemporary treatment of metastatic renal cell carcinoma. Med Oncol. 2018;35(12):156. doi: 10.1007/s12032-018-1217-1, PMID 30368624.

Lacy S, Yang B, Nielsen J, Miles D, Nguyen L, Hutmacher M. A population pharmacokinetic model of cabozantinib in healthy volunteers and patients with various cancer types. Cancer Chemother Pharmacol. 2018;81(6):1071-82. doi: 10.1007/s00280-018-3581-0. PMID 29687244.

Benzaghou F, Nguyen TXQ, Lacy S. Pharmacokinetics of cabozantinib in Asian and non-Asian populations. Ann Oncol. 2018;29Suppl 9:ix74. doi: 10.1093/annonc/mdy435.

Gerner B, Scherf Clavel O. Physiologically based pharmacokinetic modelling of cabozantinib to simulate enterohepatic recirculation, drug-drug interaction with rifampin and liver impairment. Pharmaceutics. 2021;13(6):778. doi: 10.3390/pharmaceutics13060778, PMID 34067429.

Cerbone L, Combarel D, Geraud A, Auclin E, Foulon S, Alves Costa Silva C. Association of cabozantinib pharmacokinetics, progression and toxicity in metastatic renal cell carcinoma patients: results from a pharmacokinetics/pharmacodynamics study. ESMO Open. 2021;6(6):100312. doi: 10.1016/j.esmoop.2021.100312. PMID 34864351.

European Medicines Agency. Assessment report-CHMP assessment report on Cabometyx. Proced no EMEA/H/C/004163/0000. Energy Market Authority of Singapore/664123(September):1–199; 2016.

Ding HX, Leverett CA, Kyne RE Jr, Liu KK, Sakya SM, Flick AC. Synthetic approaches to the 2012 new drugs. Bioorg Med Chem. 2014;22(7):2005-32. doi: 10.1016/j.bmc.2014.02.017, PMID 24629448. bmc.2014.02.017.

Fang R, Wang B, Zhao Z, Yin L, Wang H, Xu J. A new synthesis of cabozantinib. Org Prep Proced Int. 2019;51(4):381-7. doi: 10.1080/00304948.2019.1615362.

Boyer S, Cantin D, Sidney X. Pyridonecarboxamide derivatives useful in treating hyperproliferative and angiogenesis disorders. WO2008/048375A1, Publication date; 2008.

Di Pietro LV, Harmange J, Daniel BC, Germain EJ, Habgood GJ, Kim JL. Heterocyclic compounds and methods of use. US 7,531,553 B2. Date of patent; 2009.

Ann WJ, Sriram N, Matthew P, Neil A. Process of preparing quinoline derivatives. WO2013/059788A1; 2013.

Aftab DT. A dual Met-Vfgf modulator for treating osteolytic bone metastases. WO2013/166296A1; 2013.

Srinivasan TR, Sajja E, Gogulapati VPR, Sagyam RR, Gandham SKB, Rajesham B. The process for the preparation of N-(4-(6,7-Dimethoxyquinolin-4-Yloxy)Phenyl)-N′′-(4-Fluorophenyl)Cyclopropane-1,1-Dicarboxamide, (2S)-Hydroxybutanedioate and its polymorphs thereof. Pet Care Trust/IN2017/000139; 2017. Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018104954. [Last accessed on 11 Sep 2022]

Kompella A, Gampa VK, Annadasu A, Ganganamoni S, Konakanchi DP, Muddasani PR. An improved process for the preparation of cabozantinib and its pharmaceutically acceptable salts thereof. Pet Care Trust/IN2019/050432; 2019. Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019234761. [Last accessed on 11 Sep 2022]

Eyring MB. Spectroscopy in forensic science. Encyclopedia of physical science and technology. 3rd ed Meyers RA, editor. Academic Press; 2003. p. 637-43. doi: 10.1016/B0-12-227410-5/00957-1.

Ozturk B, Ankan A, Ozdemir D. Olive oil adulteration with sunflower and corn oil using molecular fluorescence spectroscopy. Olives and olive oil in health and disease prevention Preedy VR, Watson RR, editors. Academic Press; 2010 p. 451-61. doi: 10.1016/B978-0-12-374420-3.00050-4.

Darwish HW, Abdelhameed AS, Bakheit AH, Alanazi AM. A new method to determine the new C-Met inhibitor ”cabozantinib” in dosage form and human plasma via micelle-enhanced spectrofluorimetry. RSC Adv. 2015;5(51):40484-90. doi: 10.1039/C5RA04109K.

Coskun O. Separation techniques: chromatography. North Clin Istanb. 2016;3(2):156-60. doi: 10.14744/nci.2016.32757, PMID 28058406.

Shrivastava A, Mittal A. A mini-review on characteristics and analytical methods of otilonium bromide. Crit Rev Anal Chem. 2022;52(7):1717-25. doi: 10.1080/10408347.2021.1913983, PMID 34039224.

Wu C, Xu X, Feng C, Shi Y, Liu W, Zhu X. Degradation kinetics study of cabozantinib by a novel stability-indicating LC method and identification of its major degradation products by LC/TOF-MS and LC-MS/MS. J Pharm Biomed Anal. 2014;98:356-63. doi: 10.1016/j.jpba.2014.06.008. PMID 24992215.

Wang X, Wang S, Lin F, Zhang Q, Chen H, Wang X. Pharmacokinetics and tissue distribution model of cabozantinib in rat determined by UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;983-984:125-31. doi: 10.1016/j.jchromb.2015.01.020. PMID 25638029.

Su Q, Li J, Ji X, Li J, Zhou T, Lu W. An LC-MS/MS method for the quantitation of cabozantinib in rat plasma: application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;985:119-23. doi: 10.1016/j.jchromb.2015.01.024. PMID 25678398.

Nguyen L, Holland J, Miles D, Engel C, Benrimoh N, O’Reilly T. Pharmacokinetic (PK) drug interaction studies of cabozantinib: effect of CYP3A inducer rifampin and inhibitor ketoconazole on cabozantinib plasma PK and effect of cabozantinib on CYP2C8 probe substrate rosiglitazone plasma PK. J Clin Pharmacol. 2015;55(9):1012-23. doi: 10.1002/jcph.510, PMID 25854986.

Nguyen L, Holland J, Mamelok R, Laberge MK, Grenier J, Swearingen D. Evaluation of the effect of food and gastric pH on the single-dose pharmacokinetics of cabozantinib in healthy adult subjects. J Clin Pharmacol. 2015;55(11):1293-302. doi: 10.1002/jcph.526, PMID 25907407.

Kadi AA, Abdelhameed AS, Darwish HW, Attwa MW, Bakheit AH. Liquid chromatographic-tandem mass spectrometric assay for simultaneous quantitation of tofacitinib, cabozantinib and afatinib in human plasma and urine. Trop J Pharm Res. 2016;15(12):2683-92. doi: 10.4314/tjpr.v15i12.21.

Abdelhameed AS, Attwa MW, Kadi AA. An LC-MS/MS method for rapid and sensitive high-throughput simultaneous determination of various protein kinase inhibitors in human plasma. Biomed Chromatogr. 2017 Feb;31(2). doi: 10.1002/bmc.3793, PMID 27450926.

Ashok G, Mondal S. Stability-indicating method development and validation for the estimation of cabozantinib in pharmaceutical dosage forms by ultra-performance liquid chromatography. Asian J Pharm Clin Res. 2018;11(10):238-41. doi: 10.22159/ajpcr.2018.v11i10.27409.

Ren LJ, Wu HJ, Sun LH, Xu X, Mo LY, Zhang L. A sensitive LC-MS/MS method for simultaneous determination of cabozantinib and its metabolite cabozantinib N-oxide in rat plasma and its application in a pharmacokinetic study. Biomed Chromatogr. 2018;32(7):e4227. doi: 10.1002/bmc.4227, PMID 29500905.

Inturi S, Avula PR. A sensitive bioanalytical method development and validation of cabozantinib in human plasma by LC-ESI-MS/MS. Braz J Pharm Sci. 2018;54(2):e17163. doi: 10.1590/s2175-97902018000217163.

Kuna AK, Seru G, Radha GV. A novel RP-HPLC method for the quantification of cabozantinib in active pharmaceutical ingredients and pharmaceutical dosage forms. Int J Pharm Sci Res. 2019;10(8):3963-9. doi: 10.13040/IJPSR.0975-8232.10(8).3963-9.

Pravallika KE, Avula PR. Method development and validation for simultaneous estimation of cabozantinib and nivolumab in rat plasma by HPLC. Int J Pharm Sci Rev Res. 2020;61(2):8-12.

Krens SD, van der Meulen E, Jansman FGA, Burger DM, van Erp NP. Quantification of cobimetinib, cabozantinib, dabrafenib, niraparib, olaparib, vemurafenib, regorafenib and its metabolite regorafenib M2 in human plasma by UPLC-MS/MS. Biomed Chromatogr. 2020;34(3):e4758. doi: 10.1002/bmc.4758, PMID 31758580.

Qi X, Zhang S, Yu M, Khan S. Concurrent detection of cabozantinib as an anticancer agent and its major metabolites in human serum using fluorescence-coupled micellar liquid chromatography. Arab J Chem. 2021;14(7):103206. doi: 10.1016/j.arabjc.2021.103206.

Chaudhary AA, Shelke AV, Jadhav AG. Development and validation of RP-HPLC Method of cabozantinib in active pharmaceutical ingredient and pharmaceutical dosage form. J Pharm Res Int. 2021;33(11):81-90. doi: 10.9734/jpri/2021/v33i1131247.

Alam P, Salem Bekhit MM, Al-Joufi FA, Alqarni MH, Shakeel F. Quantitative analysis of cabozantinib in pharmaceutical dosage forms using green RP-HPTLC and green NP-HPTLC methods: A comparative evaluation. Sustain Chem Pharm. 2021;21:100413. doi: 10.1016/j.scp.2021.100413.

Satyadev TNVSS. A new selective separation method development and validation of cabozantinib and nivolumab using HPLC. J Pharm Sci Res. 2021;13(3):188-92.

Podili B, Seelam M, Kammela PR. A simple reversed phase high performance liquid chromatography method for the estimation of related substances, assay of cabozantinib and nivolumab and its application to dissolution studies. Indian J Pharm Sci. 2021;83(4):701-13. doi: 10.36468/pharmaceutical-sciences.821.

Venkateshwarlu P, Patel MM. Method development and validation of cabozantinib by LC-MS/MS. Pharmacia. 2022;69(2):407-13. doi: 10.3897/pharmacia.69.e82684.

Shriİvastava A. Characteristics and analytical methods of novel PDE5 inhibitor avanafil: an update. Hacettepe University Journal of the Faculty of Pharmacy Fac Pharm. 2022;134-47. doi: 10.52794/hujpharm.1017182.

Ivanovna KL, Sergeevich IO, Vladimirovna KO. Validation of the spectrofotometric method for the determination of quantitative composition of S-2,6-diagenoxic acid of 3-methyl-1,2,4-triazolyl- 5-thioacetate. Asian J Pharm Clin Res. 2018;11(9). doi: 10.22159/ajpcr.2018.v11i9.26684.

Bandla J, Ganapaty S. New stability-indicating ultra performance liquid chromatography method development and validation of lenvatinib mesylate in bulk drug and pharmaceutical dosage forms. Asian J Pharm Clin Res. 2018;11(9):140-3. doi: 10.22159/ajpcr.2018.v11i9.26766.

Mahajan NS, Deshmukh MFS, Farooqui M. Degradation kinetics of carvedilol pharmaceutical dosage forms (tablets) through stress degradation study. Int J Curr Pharm Sci. 2022;14(1):54-9. doi: 10.22159/ijcpr.2022v14i1.44112.

Choppella V, Badipati RBKS, Gonthina H, Chukka VK, Choppella V, K RB, Badipati S, Gonthina H, Chukka VK. Stability indicating method development and validation for simultaneous quantification of sorafenib and regorafenib drug subtances by using RP-UPLC. Int J Curr Pharm Sci. 2020;12(1):56-62. doi: 10.22159/ijcpr.2020v12i1.36832.

Beg S, Rahman M. Analytical quality by design for liquid chromatographic method development. Handbook of analytical quality by design Beg S, Hasnain MS, Rahman M, Almalki WH, editors. Academic Press; 2021. p. 87-97. doi: 10.1016/B978-0-12-820332-3.00010-8.

Sajid M, Płotka Wasylka J. Green analytical chemistry metrics: a review. Talanta. 2022;238:123046. doi: 10.1016/j.talanta.2021.123046. PMID 34801903.

Published

07-01-2023

How to Cite

DWIVEDI, A., KHABIYA, R., SHRIVASTAVA, A., TYAGI, S., NAGARAJAN, K., & DARWHEKAR, G. N. (2023). MECHANISM OF ACTION, SYNTHESIS, PROPERTIES AND ANALYTICAL METHODS OF CABOZANTINIB. International Journal of Applied Pharmaceutics, 15(1), 57–65. https://doi.org/10.22159/ijap.2023v15i1.46409

Issue

Section

Review Article(s)