SYNTHESIS OF MOLECULAR IMPRINTED POLYMER SALBUTAMOL USING METHACRYLIC ACID MONOMER AND TRIMETHYL PROPANE TRIMETHACRYLATE (TRIM) AS A CROSS-LINKER THROUGH SUSPENSION POLYMERIZATION

Authors

  • IKE SUSANTI Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
  • NISA SAFITRI Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
  • RIMADANI PRATIWI Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
  • ALIYA NUR HASANAH Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia, Drug Development Study Center, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia

DOI:

https://doi.org/10.22159/ijap.2022.v14s5.01

Keywords:

Salbutamol, Molecularly imprinted, Suspension polymerization, Separation

Abstract

Objective: This study aims to determine the analytical performances and characteristics of MIP salbutamol made with methacrylic acid (MAA) monomer and trimethylpropane trimethacrylate (TRIM) cross-linker through suspension polymerization.

Methods: The MIP salbutamol was synthesized using suspension polymerization. The analytical performances of MIP, such as the adsorption ability, adsorption capacity and selectivity, were evaluated by Spectrophotometer UV-Vis. The physical characterization of MIP and NIP were evaluated using FTIR, TEM-EDS, Brunauer-Emmett-Teller (BET) method and Barret-Joyner-Halenda (BJH) method.

Results: Molecular Imprinted Polymer (MIP) showed better analytical performance than Non-Imprinted Polymer (NIP), the adsorption ability of MIP and NIP reached about 90.43% and 53.92%, respectively. The MIP was selective for salbutamol when compared to terbutaline and salmeterol xinafoate with an imprinting factor (IF) of 1.2841. The MIP has spherical shape particles with diameters in the range of 10-100 µm with a surface area of 185.546 m2/g, pore volume of 0.257 cm3/g, and pore size of 16.599 Å.

Conclusion: The Based on these results, MIP salbutamol, has the potential to be developed as a method for the preparation of salbutamol analysis from biological samples.

Downloads

Download data is not yet available.

References

Becker LA, Hom J, Villasis Keever M, van der Wouden JC. Beta2-agonists for acute cough or a clinical diagnosis of acute bronchitis. Cochrane Database Syst Rev. 2015 Sep;2015(9):CD001726. doi: 10.1002/14651858.CD001726.pub5, PMID 26333656.

World Anti-Doping Agency. Prohibited list wada 2020. World anti-doping code; 2020.

Tongson AB, Ebarvia BS. Tailor-made sorbent for solid phase extraction of salbutamol in poultry meat and detection by high-performance liquid chromatography. In: 3rd IMEKOFOODS Conference: Metrology Promoting Harmonization and Standardization in Food and Nutrition; 2017.

Abu Surrah AS, Al-Degs YS. A molecularly imprinted polymer via a salicylaldiminato-based cobalt(III) complex: A highly selective solid-phase extractant for anionic reactive dyes. J Appl Polym Sci. 2010;117(4):2316-23. doi: 10.1002/app.32072.

Mazhar SHRA, Chrystyn H. New HPLC assay for urinary salbutamol concentrations in samples collected post-inhalation. J Pharm Biomed Anal. 2009;50(2):175-82. doi: 10.1016/j.jpba.2009.04.006, PMID 19443162.

Chan SH, Lee W, Asmawi MZ, Tan SC. Chiral liquid chromatography-mass spectrometry (LC-MS/MS) method development for the detection of salbutamol in urine samples. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1025:83-91. doi: 10.1016/j.jchromb.2016.05.015, PMID 27232053.

Mikus P, Valaskova I, Havranek E. Determination of salbutamol in pharmaceuticals by capillary electrophoresis. Arch Pharm (Weinheim). 2005;338(10):498-501. doi: 10.1002/ ardp.200500135, PMID 16211658.

Black SB, Hansson RC. Determination of salbutamol and detection of other β-agonists in human postmortem whole blood and urine by GC-MS-SIM. J Anal Toxicol. 1999;23(2):113-8. doi: 10.1093/jat/23.2.113, PMID 10192415.

Lei YC, Tsai YF, Tai YT, Lin CY, Hsieh KH, Chang TH. Development and fast screening of salbutamol residues in swine serum by an enzyme-linked immunosorbent assay in Taiwan. J Agric Food Chem. 2008;56(14):5494-9. doi: 10.1021/jf800625f, PMID 18578536.

Yan H, Wang R, Han Y, Liu S. Screening, recognition and quantitation of salbutamol residues in ham sausages by molecularly imprinted solid phase extraction coupled with high-performance liquid chromatography-ultraviolet detection. J Chromatogr B. 2012;900:18-23. doi: 10.1016/j.jchromb.2012.05.021.

Liu G, Huang X, Li L, Xu X, Zhang Y, Lv J. Recent advances and perspectives of molecularly imprinted polymer-based fluorescent sensors in food and environment analysis. Nanomaterials (Basel). 2019;9(7):1030. doi: 10.3390/nano9071030, PMID 31323858.

Herrera Chacon A, Ceto X, del Valle M. Molecularly imprinted polymers - towards electrochemical sensors and electronic tongues. Anal Bioanal Chem. 2021;413(24):6117-40. doi: 10.1007/s00216-021-03313-8, PMID 33928404.

Mohammadi A, Alizadeh T, Dinarvand R, Ganjali MR, Walker RB. Synthesis of molecularly imprinted polymer for selective solid-phase extraction of salbutamol from urine samples. Asian J Chem. 2009;21(4):2875-80.

Visakh PM, Markovic G, Pasquini D. Recent developments in polymer macro, micro and Nano blends: preparation and characterisation. Recent developments in polymer macro, micro and Nano blends: preparation and characterisation. Amsterdam: Elsevier Science; 2016.

Włoch M, Datta J. Synthesis and polymerisation techniques of molecularly imprinted polymers. Compr Anal Chem. 2019;86:17-40. doi: 10.1016/bs.coac.2019.05.011.

Pratama KF, Manik MER, Rahayu D, Hasanah AN. Effect of the molecularly imprinted polymer component ratio on analytical performance. Chem Pharm Bull (Tokyo). 2020;68(11):1013-24. doi: 10.1248/cpb.c20-00551, PMID 33132368.

Yan H, Row K. Characteristic and synthetic approach of molecularly imprinted polymer. IJMS. 2006;7(5):155-78. doi: 10.3390/i7050155.

Hasanah AN, Maelaningsih FS, Apriliandi F, Sabarudin A. Synthesis and characterisation of a monolithic imprinted column using a methacrylic acid monomer with porogen propanol for atenolol analysis. J Anal Methods Chem. 2020;2020:3027618. doi: 10.1155/2020/3027618, PMID 32190401.

Ren HP, Guan YY, Dai RH, Liu GY, Chai CY. Spectroscopic study of salbutamol molecularly imprinted polymers. Guang Pu Xue Yu Guang Pu Fen Xi. 2016;36(2):372-8. PMID 27209734.

Vasapollo G, Del Sole RD, Mergola L, Lazzoi MR, Scardino A, Scorrano S. Molecularly imprinted polymers: present and future prospective. Int J Mol Sci. 2011;12(9):5908-45. doi: 10.3390/ijms12095908, PMID 22016636.

Pengkamta T, Mala M, Klakasikit C, Kanawuttikorn P, Boonkorn P, Chuaejedton A. Synthesis and evaluation of molecularly imprinted polymer as a selective material for vanillin. Suan Sunandha Rajabhat Univ. 2020;7(1):1-6.

Zhang Y, Lei J. Synthesis and evaluation of molecularly imprinted polymeric microspheres for chloramphenicol by aqueous suspension polymerization as a high performance liquid chromatography stationary phase. Bull Korean Chem Soc. 2013;34(6):1839-44. doi: 10.5012/bkcs.2013.34.6.1839.

Hasanah AN, Soni D, Pratiwi R, Rahayu D, Megantara S, Mutakin. Synthesis of diazepam-imprinted polymers with two functional monomers in chloroform using a bulk polymerization method. J Chem. 2020;2020:1-8. doi: 10.1155/2020/7282415.

Jun-Bo L, Yang S, Shan Shan T, Rui-Fa J. Theoretical and experimental research on the self-assembled system of molecularly imprinted polymers formed by salbutamol and methacrylic acid. J Sep Sci. 2015;38(6):1065-71. doi: 10.1002/jssc.201401309, PMID 25580930.

Hasanah AN, Kartasasmi RE, Ibrahim S. Synthesis and application of glibenclamide imprinted polymer for solid phase extraction in serum samples using itaconic acid as functional monomer. J Appl Sci. 2015;15(11):1288-96. doi: 10.3923/jas.2015.1288.1296.

Ansari S. Application of magnetic molecularly imprinted polymer as a versatile and highly selective tool in food and environmental analysis: recent developments and trends. TrAC Trends Anal Chem. 2017;90:89-106. doi: 10.1016/ j.trac.2017.03.001.

Pladis P, Kiparissides C. Polymerization reactors. In: Reference module in chemistry, molecular sciences and chemical engineering; 2014.

Esfandyari Manesh M, Javanbakht M, Shahmoradi E, Dinarvand R, Atyabi F. The control of morphological and size properties of carbamazepine-imprinted microspheres and nanospheres under different synthesis conditions. J Mater Res. 2013;28(19):2677-86. doi: 10.1557/jmr.2013.262.

Hasanah AN, Fauzi D, Witka BZ, Rahayu D, Pratiwi R. Molecular imprinted polymer for ethylmorphine with methacrylic acid and acrylamide as functional monomer in butanol using two polymerization method. Mediterr J Chem. 2020;10(3):277-88. doi: 10.13171/mjc02003211282anh.

Ansell RJ. Characterization of the binding properties of molecularly imprinted polymers. Adv Biochem Eng Biotechnol. 2015;150:51-93.

Pratiwi R, Megantara S, Rahayu D, Pitaloka I, Hasanah AN. Comparison of bulk and precipitation polymerization method of synthesis molecular imprinted solid phase extraction for atenolol using methacrylic acid. J Young Pharm. 2018;11(1):12-6. doi: 10.5530/jyp.2019.11.3.

Alavi S, Takeya S, Ohmura R, Woo TK, Ripmeester JA. Hydrogen-bonding alcohol-water interactions in binary ethanol, 1-propanol, and 2-propanol+methane structure II clathrate hydrates. J Chem Phys. 2010;133(7):074505. doi: 10.1063/1.3469776, PMID 20726650.

Suryana S, Mutakin M, Rosandi Y, Hasanah AN. Rational design of salmeterol xinafoate imprinted polymer through computational method: functional monomer and crosslinker selection. Polym Adv Technol. 2022;33(1):221-34. doi: 10.1002/pat.5507.

Saadi R, Saadi Z, Fazaeli R, Fard NE. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J Chem Eng. 2015;32(5):787-99. doi: 10.1007/s11814-015-0053-7.

Shikuku VO, Zanella R, Kowenje CO, Donato FF, Bandeira NMG, Prestes OD. Single and binary adsorption of sulfonamide antibiotics onto iron-modified clay: linear and nonlinear isotherms, kinetics, thermodynamics, and mechanistic studies. Appl Water Sci. 2018;8(6). doi: 10.1007/s13201-018-0825-4.

Hasanah AN, Dwi Utari TN, Pratiwi R. Synthesis of atenolol-imprinted polymers with methyl methacrylate as functional monomer in propanol using bulk and precipitation polymerization method. J Anal Methods Chem. 2019;2019:9853620. doi: 10.1155/2019/9853620, PMID 31236306.

Lee H, Choi J, Choi S. Magnetic ion-imprinted polymer based on mesoporous silica for selective removal of Co(II) from radioactive wastewater. Sep Sci Technol. 2021;56(11):1842-52. doi: 10.1080/01496395.2020.1797798.

Lu H, Tian H, Wang C, Xu S. Designing and controlling the morphology of spherical molecularly imprinted polymers. Mater Adv. 2020;1(7):2182-201. doi: 10.1039/D0MA00415D.

Cheng W, Ma H, Zhang L, Wang Y. Hierarchically imprinted mesoporous silica polymer: an efficient solid-phase extractant for bisphenol A. Talanta. 2014;120:255-61. doi: 10.1016/j.talanta.2013.12.001, PMID 24468367.

Published

27-12-2022

How to Cite

SUSANTI, I., SAFITRI, N., PRATIWI, R., & HASANAH, A. N. (2022). SYNTHESIS OF MOLECULAR IMPRINTED POLYMER SALBUTAMOL USING METHACRYLIC ACID MONOMER AND TRIMETHYL PROPANE TRIMETHACRYLATE (TRIM) AS A CROSS-LINKER THROUGH SUSPENSION POLYMERIZATION. International Journal of Applied Pharmaceutics, 14(5), 32–39. https://doi.org/10.22159/ijap.2022.v14s5.01

Issue

Section

Original Article(s)

Most read articles by the same author(s)