COELENTERATE TOXINS, ITS PHARMACEUTICAL AND THERAPEUTIC EFFECTS

Authors

  • SIMRAN SHARMA Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur
  • RAVI KANT UPADHYAY Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

DOI:

https://doi.org/10.22159/ijcpr.2021v13i6.1912

Keywords:

Coelenterate toxins, Ion channels, Venoms biological, Pharmaceutical and therapeutic effects

Abstract

Present review article emphasizes species specific coelenterate toxins, its pharmaceutical and therapeutic effects. Most of the coelenterates inflict venom accidently by using nematocysts found on arms. These animals very quickly do massive and multiple inflictions of venom which causes cardiotoxicity that leads to the death of human beings. Coelenterate venom toxin groups differ in their composition and show diverse biological activity i.e. cytolytic or neurotoxic, hemolytic, anti-parasitic activity, α-amylase inhibitor activity, and analgesic activity anti-cancerous and antitumor activity, anti-inflammatory and antimicrobial activity. Coelenterate venom initiates toxic and immunological reactions exert their effects by modifying the properties of the ion channels involved in action potential generation in nerve, heart, and skeletal muscles. This article suggests available information, on coelenterate toxins could be used to develop potential therapeutic interventions for various human diseases and disorders.

Downloads

Download data is not yet available.

References

Zhang Y. Why do we study animal toxins? Dongwuxue Yanjiu. 2015;36(4):183-222. doi: 10.13918/j.issn.2095-8137.2015.4.183, PMID 26228472.

Frazao B, Vasconcelos V, Antunes A. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs. 2012;10(8):1812-51. doi: 10.3390/md10081812, PMID 23015776.

Rocha J, Peixe L, Gomes NC, Calado R. Cnidarians as a source of new marine bioactive compounds- an overview of the last decade and future steps for bioprospecting. Mar Drugs. 2011;9(10):1860-86. doi: 10.3390/md9101860, PMID 22073000.

Hoepner CM, Abbott CA, Burke da Silva K. The ecological importance of toxicity: sea anemones maintain toxic defence when bleached. Toxins (Basel). 2019;11(5):266. doi: 10.3390/toxins11050266, PMID 31083576.

Moran Y, Praher D, Schlesinger A, Ayalon A, Tal Y, Technau U. Analysis of soluble protein contents from the nematocysts of a model sea anemone sheds light on venom evolution. Mar Biotechnol (NY). 2013;15(3):329-39. doi: 10.1007/s10126-012-9491-y, PMID 23151943.

Jouiaei M, Yanagihara AA, Madio B, Nevalainen TJ, Alewood PF, Fry BG. Ancient venom systems: a review on Cnidaria toxins. Toxins (Basel). 2015;7(6):2251-71. doi: 10.3390/toxins7062251, PMID 26094698.

Nevalainen MT, Valve EM, Ingleton PM, Nurmi M, Martikainen PM, Harkonen PL. Prolactin and prolactin receptors are expressed and functioning in the human prostate. J Clin Invest. 1997;99(4):618-27. doi: 10.1172/JCI119204, PMID 9045863.

Mariottini GL, Pane L. Cytotoxic and cytolytic cnidarian venoms. A review on health implications and possible therapeutic applications. Toxins (Basel). 2013;6(1):108-51. doi: 10.3390/toxins6010108, PMID 24379089.

Moore RE, Scheuer PJ. Palytoxin: a new marine toxin from a coelenterate. Science. 1971;172(3982):495-8. doi: 10.1126/science.172.3982.495, PMID 4396320.

D’Ambra I, Lauritano C. A review of toxins from Cnidaria. Mar Drugs. 2020;18(10):507. doi: 10.3390/md18100507, PMID 33036158.

Klompen AML, Macrander J, Reitzel AM, Stampar SN. Transcriptomic analysis of four cerianthid (Cnidaria, Ceriantharia) venoms. Mar Drugs. 2020;18(8):413. doi: 10.3390/md18080413, PMID 32764303.

Madio B, King GF, Undheim EAB. Sea anemone toxins: A structural overview. Mar Drugs. 2019;17(6):325. doi: 10.3390/md17060325, PMID 31159357.

Honma T, Shiomi K. Peptide toxins in sea anemones: structural and functional aspects. Mar Biotechnol (NY). 2006;8(1):1-10. doi: 10.1007/s10126-005-5093-2, PMID 16372161.

Madio B, Peigneur S, Chin YKY, Hamilton BR, Henriques ST, Smith JJ, Cristofori-Armstrong B, Dekan Z, Boughton BA, Alewood PF, Tytgat J, King GF, Undheim EAB. PHAB toxins: a unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold. Cell Mol Life Sci. 2018;75(24):4511-24. doi: 10.1007/s00018-018-2897-6, PMID 30109357.

Dominguez Perez D, Campos A, Alexei Rodriguez A, Turkina MV, Ribeiro T, Osorio H, Vasconcelos V, Antunes A. Proteomic analyses of the unexplored sea anemone Bunodactis verrucosa. Mar Drugs. 2018;16(2):42. doi: 10.3390/md16020042, PMID 29364843.

Ramirez Carreto S, Vera Estrella R, Portillo Bobadilla T, Licea Navarro A, Bernaldez Sarabia J, Rudino Pinera E, Verleyen JJ, Rodriguez E, Rodriguez Almazan C. Transcriptomic and proteomic analysis of the tentacles and mucus of Anthopleuradowii Verrill, 1869. Mar Drugs. 2019;17(8):436. doi: 10.3390/md17080436, PMID 31349621.

Yamaguchi Y, Hasegawa Y, Honma T, Nagashima Y, Shiomi K. Screening and cDNA cloning of Kv1 potassium channel toxins in sea anemones. Mar Drugs. 2010;8(12):2893-905. doi: 10.3390/md8122893, PMID 21339955.

Orts B DJ, Peigneur S, Silva Gonçalves LC, Arcisio Miranda M, PW Bicudo JEJ. AbeTx1 Is a novel sea anemone toxin with a dual mechanism of action on shaker-type K⁺ channels activation. Mar Drugs. 2018;16:360.

Wanke E, Zaharenko AJ, Redaelli E, Schiavon E. Actions of sea anemone type 1 neurotoxins on voltage-gated sodium channel isoforms. Toxicon. 2009;54(8):1102-11. doi: 10.1016/j.toxicon.2009.04.018, PMID 19393679.

Honma T, Minagawa S, Nagai H, Ishida M, Nagashima Y, Shiomi K. Novel peptide toxins from acrorhagi, aggressive organs of the sea anemone Actinia equina. Toxicon. 2005;46(7):768-74. doi: 10.1016/j.toxicon.2005.08.003, PMID 16183092.

Kalina RS, Koshelev SG, Zelepuga EA, Kim NY, Kozlov SA, Kozlovskaya EP, Monastyrnaya MM, Gladkikh IN. APETx-like peptides from the sea anemone Heteractis crispa, diverse in their effect on ASIC1a and ASIC3 ion channels. Toxins (Basel). 2020;12(4):266. doi: 10.3390/toxins12040266, PMID 32326130.

Kim CH, Lee YJ, Go HJ, Oh HY, Lee TK, Park JB, Park NG. Defensin-neurotoxin dyad in a basally branching metazoan sea anemone. FEBS Journal. 2017;284(19):3320-38. doi: 10.1111/febs.14194, PMID 28796463.

Prentis PJ, Pavasovic A, Norton RS. Sea anemones: quiet achievers in the field of peptide toxins. Toxins (Basel). 2018;10(1):36. doi: 10.3390/toxins10010036, PMID 29316700.

Li R, Yu H, Li T, Li P. Comprehensive proteome reveals the key lethal toxins in the venom of jellyfish Nemopile manomurai. J Proteome Res. 2020;19(6):2491-500. doi: 10.1021/ acs.jproteome.0c00277, PMID 32374608.

Ovchinnikova TV, Balandin SV, Aleshina GM, Tagaev AA, Leonova YF, Krasnodembsky ED, Men’shenin AV, Kokryakov VN. Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem Biophys Res Commun. 2006;348(2):514-23. doi: 10.1016/j.bbrc.2006.07.078, PMID 16890198.

Li R, Yu H, Xue W, Yue Y, Liu S, Xing R, Li P. Jellyfish venomics and venom gland transcriptomics analysis of Stomolo phusmeleagris to reveal the toxins associated with sting. J Proteomics. 2014;106:17-29. doi: 10.1016/j.jprot.2014.04.011, PMID 24747124.

Li A, Yu H, Li R, Liu S, Xing R, Li P. Inhibitory effect of metalloproteinase inhibitors on skin cell inflammation induced by jellyfish Nemopile manomurai nematocyst venom. Toxins (Basel). 2019;11(3):156. doi: 10.3390/toxins11030156, PMID 30857352.

Huang C, Morlighem JR, Zhou H, Lima ÉP, Gomes PB, Cai J, Lou I, Perez CD, Lee SM, Radis Baptista G. The transcriptome of the zoanthid Protopalythoa variabilis (Cnidaria, Anthozoa) predicts a basal repertoire of toxin-like and venom-auxiliary polypeptides. Genome Biol Evol. 2016;8(9):3045-64. doi: 10.1093/gbe/evw204, PMID 27566758.

Rathje K, Mortzfeld B, Hoeppner MP, Taubenheim J, Bosch TCG, Klimovich A. Dynamic interactions within the host-associated microbiota cause tumor formation in the basal metazoan Hydra. PLOS Pathog. 2020;16(3):e1008375. doi: 10.1371/journal.ppat.1008375, PMID 32191776.

Yan L, Fei K, Zhang J, Dexter S, Sarras MP Jr. Identification and characterization of hydra metalloproteinase 2 (HMP2): a meprin-like astacin metalloproteinase that functions in foot morphogenesis. Development. 2000;127(1):129-41. doi: 10.1242/dev.127.1.129, PMID 10654607.

Pierobon P, Parmeggiani A, von Oppen F, Frey E. Dynamic correlation functions and Boltzmann-Langevin approach for driven one-dimensional lattice gas. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;72(3 Pt 2):036123:036123. doi: 10.1103/PhysRevE.72.036123.

Ben-Ari H, Paz M, Sher D. The chemical armament of reef-building corals: inter-and intra-specific variation and the identification of an unusual actinoporin in Stylophora pistilata. Sci Rep 2018;8:251.

Grimme likhuijzen CJ. Coexistence of neuropeptides in hydra. Neuroscience. 1983;9(4):837-45. doi: 10.1016/0306-4522(83)90272-5, PMID 6353276.

Milbradt AG, Boulegue C, Moroder L, Renner C. The two cysteine-rich head domains of minicollagen from Hydra nematocysts differ in their cystine framework and overall fold despite an identical cysteine sequence pattern. J Mol Biol. 2005;354(3):591-600. doi: 10.1016/j.jmb.2005.09.080, PMID 16257007.

Jiemy WF, Hiew LF, Sha HX, In LLA, Hwang JS. Evaluation of hydra HALT-1 as a toxin moiety for recombinant immunotoxin. BMC Biotechnol. 2020;20(1):31. doi: 10.1186/s12896-020-00628-9, PMID 32552895.

Beeton C, Pennington MW, Wulff H, Singh S, Nugent D, Crossley G, Khaytin I, Calabresi PA, Chen CY, Gutman GA, Chandy KG. Targeting effector memory T cells with a selective peptide inhibitor of Kv1.3 channels for therapy of autoimmune diseases. Mol Pharmacol. 2005;67(4):1369-81. doi: 10.1124/ mol.104.008193, PMID 15665253.

Sachkova MY, Landau M, Surm JM, Macrander J, Singer SA, Reitzel AM, Moran Y. Toxin-like neuropeptides in the sea anemone Nematostella unravel recruitment from the nervous system to venom. Proc Natl Acad Sci USA. 2020;117(44):27481-44927481-92. doi: 10.1073/pnas.2011120117, PMID 33060291.

Liao Q, Gong G, Siu SWI, Wong CTT, Yu H, Tse YC, Radis Baptista G, Lee SM. A novel ShK-like toxic peptide from the transcriptome of the cnidarian Palythoacaribaeorum displays neuroprotection and cardioprotection in zebrafish. Toxins (Basel). 2018;10(6):238. doi: 10.3390/toxins10060238, PMID 29895785.

Chagot B, Escoubas P, Diochot S, Bernard C, Lazdunski M, Darbon H. Solution structure of APETx2, a specific peptide inhibitor of ASIC3 proton-gated channels. Protein Sci. 2005;14(8):2003-10. doi: 10.1110/ps.051378905, PMID 15987885.

Nicosia A, Mikov A, Cammarata M, Colombo P, Andreev Y, Kozlov S, Cuttitta A. The anemoniaviridis venom: coupling biochemical purification and RNA-seq for translational research. Mar Drugs. 2018 Oct 25;16(11):407. doi: 10.3390/md16110407, PMID 30366463.

Orts DJ, Peigneur S, Madio B, Cassoli JS, Montandon GG, Pimenta AM, Bicudo JE, Freitas JC, Zaharenko AJ, Tytgat J. Biochemical and electrophysiological characterization of two sea anemone type 1 potassium toxins from a geographically distant population of Bunodosoma caissarum. Mar Drugs. 2013;11(3):655-79. doi: 10.3390/md11030655, PMID 23466933.

Dominguez Perez D, Rodriguez AA, Osorio H, Azevedo J, Castaneda O, Vasconcelos V, Antunes A. Microcystin-LR detected in a low molecular weight fraction from a crude extract of Zoanthus sociatus. Toxins (Basel). 2017;9(3):89. doi: 10.3390/toxins9030089.

Zhang R, Jin L, Zhang N, Petridis AK, Eckert T, Scheiner Bobis G, Bergmann M, Scheidig A, Schauer R, Yan M, Wijesundera SA, Norden B, Chatterjee BK, Siebert HC. The sialic acid-dependent nematocyst discharge process in relation to its physical-chemical properties is a role model for nanomedical diagnostic and therapeutic tools. Mar Drugs. 2019;17(8):469. doi: 10.3390/md17080469, PMID 31409009.

Rivera-de-Torre E, Palacios Ortega J, Slotte JP, Gavilanes JG, Martinez Del-Pozo A, Garcia Linares S. Functional and structural variation among sticholysins, pore-forming proteins from the Sea Anemone Stichodactyla helianthus. Int J Mol Sci. 2020;21(23):8915. doi: 10.3390/ijms21238915, PMID 33255441.

Liew YJ, Soh WT, Jiemy WF, Hwang JS. Mutagenesis and functional analysis of the pore-forming toxin HALT-1 from Hydra magnipapillata. Toxins (Basel). 2015;7(2):407-22. doi: 10.3390/toxins7020407, PMID 25654788.

Stabili L, Schirosi R, Parisi MG, Piraino S, Cammarata M. The mucus of actinia equina (Anthozoa, Cnidaria): an unexplored resource for potential applicative purposes. Mar Drugs. 2015;13(8):5276-96. doi: 10.3390/md13085276, PMID 26295400.

Leychenko E, Isaeva M, Tkacheva E, Zelepuga E, Kvetkina A, Guzev K, Monastyrnaya M, Kozlovskaya E. Multigene family of pore-forming toxins from sea anemone Heteractis crispa. Mar Drugs. 2018;16(6):183. doi: 10.3390/md16060183, PMID 29794988.

Tejuca M, Anderluh G, Macek P, Marcet R, Torres D, Sarracent J, Alvarez C, Lanio ME, Dalla Serra M, Menestrina G. Antiparasite activity of sea-anemone cytolysins on Giardia duodenalis and specific targeting with anti-Giardia antibodies. Int J Parasitol. 1999;29(3):489-98. doi: 10.1016/s0020-7519(98)00220-3, PMID 10333333.

Liang X, Wang R, Dou W, Zhao L, Zhou L, Zhu J, Wang K, Yan J. Arminin 1a-C, a novel antimicrobial peptide from ancient metazoan Hydra, shows potent antileukemia activity against drug-sensitive and drug-resistant leukemia cells. Drug Des Devel Ther. 2018;12:3691-703. doi: 10.2147/DDDT.S181188, PMID 30464401.

Sintsova O, Gladkikh I, Kalinovskii A, Zelepuga E, Monastyrnaya M, Kim N, Shevchenko L, Peigneur S, Tytgat J, Kozlovskaya E, Leychenko E. Magnificamide, a β-defensin-like peptide from the mucus of the sea anemone Heteractis magnifica, is a strong inhibitor of mammalian α-amylases. Mar Drugs. 2019;17(10):542. doi: 10.3390/md17100542, PMID 31546678.

Osmakov DI, Kozlov SA, Andreev YA, Koshelev SG, Sanamyan NP, Sanamyan KE, Dyachenko IA, Bondarenko DA, Murashev AN, Mineev KS, Arseniev AS, Grishin EV. Sea anemone peptide with uncommon β-hairpin structure inhibits acid-sensing ion channel 3 (ASIC3) and reveals analgesic activity. J Biol Chem. 2013;288(32):23116-27. doi: 10.1074/jbc.M113.485516, PMID 23801332.

Andreev YA, Osmakov DI, Koshelev SG, Maleeva EE, Logashina YA, Palikov VA. Analgesic activity of acid-sensing. Ion Channels 3 (ASIС3) Inhibitors: Sea Anemones Peptides Ugr9-1 and APETx2 versus low molecular weight compounds. Mar Drugs. 2012;16:500.

Babenko VV, Mikov AN, Manuvera VA, Anikanov NA, Kovalchuk SI, Andreev YA, Logashina YA, Kornilov DA, Manolov AI, Sanamyan NP, Sanamyan KE, Kostryukova ES, Kozlov SA, Grishin EV, Govorun VM, Lazarev VN. Identification of unusual peptides with new Cys frameworks in the venom of the cold-water sea anemone Cnidopus japonicus. Sci Rep. 2017;7(1):14534. doi: 10.1038/s41598-017-14961-1, PMID 29109403.

Mariottini GL, Pane L. Mediterranean jellyfish venoms: a review on sScyphomedusae. Mar Drugs. 2010;8(4):1122-52. doi: 10.3390/md8041122, PMID 20479971.

Alvarez C, Ros U, Valle A, Pedrera L, Soto C, Hervis YP, Cabezas S, Valiente PA, Pazos F, Lanio ME. Biophysical and biochemical strategies to understand membrane binding and pore formation by sticholysins, pore-forming proteins from a sea anemone. Biophys Rev. 2017;9(5):529-44. doi: 10.1007/s12551-017-0316-0, PMID 28853034.

Bulati M, Longo A, Masullo T, Vlah S, Bennici C, Bonura A, Salamone M, Tagliavia M, Nicosia A, Mazzola S, Colombo P, Cuttitta A. Partially purified extracts of sea anemone nemonia viridis affect the growth and viability of selected tumour cell lines. BiomMed Res Int. 2016:3849897;2016:3849897. doi: 10.1155/2016/3849897.

Ayed Y, Sghaier RM, Laouini D, Bacha H. Evaluation of anti-proliferative and anti-inflammatory activities of Pelagianoctiluca venom in lipopolysaccharide/interferon-γ stimulated RAW264.7 macrophages. Biomed Pharmacother. 2016;84:1986-91. doi: 10.1016/j.biopha.2016.11.010, PMID 27876211.

Loret EP, Luis J, Nuccio C, Villard C, Mansuelle P, Lebrun R, Villard P. A low molecular weight protein from the sea anemone Anemonia viridis with anti-angiogenic activity. Mar Drugs. 2018;16(4):134. doi: 10.3390/md16040134.

Dominguez Perez D, Campos A, Alexei Rodriguez A, Turkina MV, Ribeiro T, Osorio H, Vasconcelos V, Antunes A. Proteomic analyses of the unexplored sea anemone bunodactis verrucosa. Mar Drugs. 2018;16(2):42. doi: 10.3390/md16020042, PMID 29364843.

D’Ambra, Chiara Lauritano. A review of toxins from Cnidaria I. Mar Drugs. 2020;1:18, 507.

Kalina RS, Peigneur S, Zelepuga EA, Dmitrenok PS, Kvetkina AN, Kim NY, Leychenko EV, Tytgat J, Kozlovskaya EP, Monastyrnaya MM, Gladkikh IN. New insights into the Type II toxins from the sea anemone Heteractis crispa. Toxins. 2020;12(1):44. doi: 10.3390/toxins12010044, PMID 31936885.

Monastyrnaya M, Peigneur S, Zelepuga E, Sintsova O, Gladkikh I, Leychenko E, Isaeva M, Tytgat J, Kozlovskaya E. Kunitz type peptide HCRG21 from the sea anemone Heteractis crispa Iis a full antagonist of the TRPV1 receptor. Mar Drugs. 2016;14(12):229. doi: 10.3390/md14120229, PMID 27983679.

Sintsova O, Gladkikh I, Kalinovskii A, Zelepuga E, Monastyrnaya M, Kim N, Shevchenko L, Peigneur S, Tytgat J, Kozlovskaya E, Leychenko E. Magnificamide, a β-defensin-like peptide from the mucus of the sea anemone Heteractis magnifica, is a strong inhibitor of mammalian α-amylases. Mar Drugs. 2019;17(10):542. doi: 10.3390/md17100542, PMID 31546678.

Chi V, Pennington MW, Norton RS, Tarcha EJ, Londono LM, Sims-Fahey B, Upadhyay SK, Lakey JT, Iadonato S, Wulff H, Beeton C, Chandy KG. Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon. 2012 Mar 15;59(4):529-46. doi: 10.1016/j.toxicon.2011.07.016, PMID 21867724.

Kalina RS, Koshelev SG, Zelepuga EA, Kim NY, Kozlov SA, Kozlovskaya EP, Monastyrnaya MM, Gladkikh IN. APETx-like peptides from the sea anemone heteractis crispa, diverse in their effect on ASIC1a and ASIC3 Iion channels. Toxins (Basel). 2020;12(4):266. doi: 10.3390/toxins12040266, PMID 32326130.

Ramirez Carreto S, Vera-Estrella R, Portillo-Bobadilla T, Licea-Navarro A, Bernaldez-Sarabia J, Rudino-Pinera E, Verleyen JJ, Rodriguez E, Rodriguez-Almazan C,. Transcriptomic and proteomic analysis of the tentacles and mucus of anthopleura dowii verrill, 1869. Mar Drugs. 2019;17(8):436. doi: 10.3390/md17080436.

Nicosia A, Maggio T, Mazzola S, Cuttitta A. Evidence of accelerated evolution and ectodermal-specific expression of presumptive BDS toxin cDNAs from Anemonia viridis. Mar Drugs. 2013;11(11):4213-31. doi: 10.3390/md11114213, PMID 24177670.

Nicosia A, Maggio T, Mazzola S, Gianguzza F, Cuttitta A, Costa S. Characterization of small HSPs from Anemoniaviridis reveals insights into the molecular evolution of alpha-crystallin genes among cnidarians. PLoS One. 2014;9(9):e105908. doi: 10.1371/journal.pone.0105908, PMID 25251681.

Stabili L, Rizzo L, Basso L, Marzano M, Fosso B, Pesole G, Piraino S. The microbial community associated with rhizostoma pulmo: Eecological significance and potential consequences for marine organisms and human health. Mar Drugs. 2020;18(9):437. doi: 10.3390/md18090437, PMID 32839397.

Kumar RB, Suresh MX. Neurotox: a unique database for animal neurotoxins. Int J Pharm Pharm Sci. 2015;7:351-4.

Asawale KY, MC Mehta MC, PS. Uike PS. Drug utilization analysis of anti-snake venom at a tertiary care center in central maharashtra: a 3 y retrospective study. Asian J Pharm Clin Res. 2018;11(8):134-7. doi: 10.22159/ajpcr.2018.v11i8.26174.

Published

15-11-2021

How to Cite

SHARMA, S., and R. K. UPADHYAY. “COELENTERATE TOXINS, ITS PHARMACEUTICAL AND THERAPEUTIC EFFECTS”. International Journal of Current Pharmaceutical Research, vol. 13, no. 6, Nov. 2021, pp. 11-19, doi:10.22159/ijcpr.2021v13i6.1912.

Issue

Section

Review Article(s)