• SHEEJA S. RAJAN Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
  • PERUMAL SUBRAMANIAN Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
  • J. P. JOSE MERLIN Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA



Peptides, Venom toxin, L-amino acid oxidases, Phospholipase A2, Therapeutic tools


Small peptides from snake venom are studied as exceedingly selective, specific, effective and harmless therapeutics. This review article critically analyzes with numerous examples for the use of snake venom components as a potential therapeutic tool against various illnesses. The active components from numerous venoms are isolated, purified and used in assays to identify the specific therapeutic components that were categorized based on their biological goal and mechanism of action. This has paved the ways to use peptides from venom as therapeutic drugs. Peptide toxins are usually active orally, via subcutaneous, intramuscular or intravenous administrations. These peptides are targeting a wide range of membrane-bound protein channels and receptors. Peptides are recovered from the venom of diverse animals and most of these possess the possible prospects of safety after isolation and purification and venom-obtained peptides that can become practical drugs effectively, in future.


Download data is not yet available.


Utkin YN. Animal venom studies: current benefits and future developments. World J Biol Chem. 2015;6(2):28-33. doi: 10.4331/wjbc.v6.i2.28, PMID 26009701.

Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: current status and potential. Bioorg Med Chem. 2018;26(10):2738-58. doi: 10.1016/j.bmc.2017.09.029, PMID 28988749.

Munawar A, Ali SA, Akrem A, Betzel C. Snake venom peptides: tools of biodiscovery. Toxins. 2018;10(11):474. doi: 10.3390/toxins10110474, PMID 30441876.

Simoes Silva R, Alfonso J, Gomez A, Holanda RJ, Sobrinho JC, Zaqueo KD, Moreira-Dill LS, Kayano AM, Grabner FP, da Silva SL, Almeida JR, Stabeli RG, Zuliani JP, Soares AM. Snake venom, a natural library of new potential therapeutic molecules: challenges and current perspectives. Curr Pharm Biotechnol. 2018;19(4):308-35. doi: 10.2174/1389201019666180620111025, PMID 29929461.

Longbottom J, Shearer FM, Devine M, Alcoba G, Chappuis F, Weiss DJ, Ray SE, Ray N, Warrell DA, Ruiz de Castaneda R, Williams DJ, Hay SI, Pigott DM. Vulnerability to snakebite envenoming: a global mapping of hotspots. Lancet. 2018;392(10148):673-84. doi: 10.1016/S0140-6736(18)31224-8, PMID 30017551.

Ralph R, Sharma SK, Faiz MA, Ribeiro I, Rijal S, Chappuis F, Kuch U. The timing is right to end snakebite deaths in South Asia. Br Med J. 2019;364:k5317. doi: 10.1136/bmj.k5317, PMID 30670457.

Silva A, Isbister GK. Current research into snake antivenoms, their mechanisms of action and applications. Biochem Soc Trans. 2020;48(2):537-46. doi: 10.1042/BST20190739, PMID 32196542.

Tasoulis T, Isbister GK. A review and database of snake venom proteomes. Toxins (Basel). 2017;9(9):290. doi: 10.3390/toxins9090290, PMID 28927001.

Sanhajariya S, Duffull SB, Isbister GK. Pharmacokinetics of snake venom. Toxins (Basel). 2018;10(2):73. doi: 10.3390/toxins10020073, PMID 29414889.

Cheng CL, Mao YC, Liu PY, Chiang LC, Liao SC, Yang CC. Deinagkistrodon acutus envenomation: a report of three cases. J Venom Anim Toxins Incl Trop Dis. 2017;23:20. doi: 10.1186/s40409-017-0111-1, PMID 28344596.

Chinnasamy S, Selvaraj G, Selvaraj C, Kaushik AC, Kaliamurthi S, Khan A, Singh SK, Wei DQ. Combining in silico and in vitro approaches to identification of potent inhibitor against phospholipase A2 (PLA2). Int J Biol Macromol. 2020;144:53-66. doi: 10.1016/j.ijbiomac.2019.12.091, PMID 31838071.

Ferraz CR, Arrahman A, Xie C, Casewell NR, Lewis RJ, Kool J, Cardoso FC. Multifunctional toxins in snake venoms and therapeutic implications: from pain to hemorrhage and necrosis. Front Ecol Evol. 2019;7(7):218. doi: 10.3389/fevo.2019.00218.

Zainal Abidin SA, Rajadurai P, Chowdhury MEH, Ahmad Rusmili MR, Othman I, Naidu R. Cytotoxic, antiproliferative and apoptosis-inducing activity of L-amino acid oxidase from Malaysian Calloselasma rhodostoma on human colon cancer cells. Basic Clin Pharmacol Toxicol. 2018;123(5):577-88. doi: 10.1111/bcpt.13060, PMID 29908095.

Meier J, Stocker KF. Biology and distributuion of venomous snakes of medical importance and the composition of snake venom. In: Meier J, White J, editors. Handbook of clinical toxicology of animal venoms and proteins. Boca Raton, FL: CRC Press Press; 2008. p. 367-412.

Puzari U, Mukherjee AK. Recent developments in diagnostic tools and bioanalytical methods for analysis of snake venom: A critical review. Anal Chim Acta. 2020;1137:208-24. doi: 10.1016/j.aca.2020.07.054, PMID 33153604.

Nalbantsoy A, Hempel BF, Petras D, Heiss P, Gocmen B, Igci N, Yildiz MZ, Süssmuth RD. Combined venom profiling and cytotoxicity screening of the Radde’s mountain viper (Montivipera raddei) and mount Bulgar viper (Montivipera bulgardaghica) with potent cytotoxicity against human A549 lung carcinoma cells. Toxicon. 2017;135(1):71-83. doi: 10.1016/j.toxicon.2017.06.008, PMID 28625888.

Casewell NR. Venom evolution: gene loss shapes phenotypic adaptation. Curr Biol. 2016;26(18):R849-51. doi: 10.1016/j.cub.2016.07.082, PMID 27676304.

Calvete JJ, Sanz L, Cid P, de la Torre P, Flores Diaz M, Dos Santos MCD, Borges A, Bremo A, Angulo Y, Lomonte B, Alape-Giron A, Gutierrez JM. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along with crotalus dispersal in South America. J Proteome Res. 2010;9(1):528-44. doi: 10.1021/pr9008749, PMID 19863078.

Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutierrez JM. Venoms, venomics, antivenomics. FEBS Lett. 2009;583(11):1736-43. doi: 10.1016/j.febslet.2009.03.029, PMID 19303875.

Rosenberg HI. Histology, histochemistry, and emptying mechanism of the venom glands of some elapid snakes. J Morphol. 1967;123(2):133-55. doi: 10.1002/jmor.1051230204, PMID 6073683.

Boldrini Franca J, Cologna CT, Pucca MB, Bordon KCF, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cerni FA, Pinheiro Junior EL, Shibao PY, Ferreira IG, de Oliveira IS, Cardoso IA, Arantes EC. Minor snake venom proteins: structure, function and potential applications. Biochim Biophys Acta Gen Subj. 2017;1861(4):824-38. doi: 10.1016/j.bbagen.2016.12.022, PMID 28012742.

Rokyta DR, Wray KP, McGivern JJ, Margres MJ. The transcriptomic and proteomic basis for the evolution of a novel venom phenotype within the timber rattlesnake (Crotalus horridus). Toxicon. 2015;98:34-48. doi: 10.1016/j.toxicon.2015.02.015, PMID 25727380.

Casewell NR, Wagstaff SC, Wuster W, Cook DAN, Bolton FMS, King SI. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc Natl Acad Sci USA 2014;111(25):9205-10.

Durban J, Perez A, Sanz L, Gomez A, Bonilla F, Rodriguez S, Chacon D, Sasa M, Angulo Y, Gutierrez JM, Calvete JJ. Integrated “omics” profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics. 2013;14:234. doi: 10.1186/1471-2164-14-234, PMID 23575160.

Boldrini Franca J, Correa Netto C, Silva MMS, Rodrigues RS, De La Torre PDL, Perez A, Soares AM, Zingali RB, Nogueira RA, Rodrigues VM, Sanz L, Calvete JJ. Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: assessment of geographic variation and its implication on snakebite management. J Proteomics. 2010;73(9):1758-76. doi: 10.1016/j.jprot.2010.06.001, PMID 20542151.

Modahl CM, Mackessy SP. Venoms of rear-fanged snakes: new proteins and novel activities. Front Ecol Evol. 2019;7:279. doi: 10.3389/fevo.2019.00279.

Urra FA, Araya Maturana R. Putting the brakes on tumorigenesis with snake venom toxins: new molecular insights for cancer drug discovery. Semin Cancer Biol. 2020;16(20):30102-4. doi: 10.1016/j.semcancer.2020.05.006, PMID 32428714.

Harris JB, Scott Davey T. Secreted phospholipases A2 of snake venoms: effects on the peripheral neuromuscular system with comments on the role of phospholipases A2 in disorders of the CNS and their uses in industry. Toxins (Basel). 2013;5(12):2533-71. doi: 10.3390/toxins5122533, PMID 24351716.

Perry BW, Card DC, Mcglothlin JW, Pasquesi GIM, Adams RH, Schield DR, Hales NR, Corbin AB, Demuth JP, Hoffmann FG, Vandewege MW, Schott RK, Bhattacharyya N, Chang BSW, Casewell NR, Whiteley G, Reyes Velasco J, Mackessy SP, Gamble T, Storey KB, Biggar KK, Passow CN, Kuo CH, McGaugh SE, Bronikowski AM, de Koning APJ, Edwards SV, Pfrender ME, Minx P, Brodie ED, Brodie ED, Warren WC, Castoe TA. Molecular adaptations for sensing and securing prey and insight into amniote genome diversity from the garter snake genome. Genome Biol Evol. 2018;10(8):2110-29. doi: 10.1093/gbe/evy157, PMID 30060036.

Fry BG, Scheib H, de L M Junqueira de Azevedo I, Silva DA, Casewell NR. Novel transcripts in the maxillary venom glands of advanced snakes. Toxicon. 2012;59(7-8):696-708. doi: 10.1016/j.toxicon.2012.03.005, PMID 22465490.

Junqueira-De-Azevedo IL, Bastos CM, Ho PL, Luna MS, Yamanouye N, Casewell NR. Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom. Mol Biol Evol. 2015;32(3):754-66. doi: 10.1093/molbev/msu337, PMID 25502939.

Zhang CC, Medzihradszky KF, Sanchez EE, Basbaum AI, Julius D. Lys49 myotoxin from the Brazilian lancehead pit viper elicits pain through regulated ATP release. Proc Natl Acad Sci USA. 2017;114(12):E2524-32. doi: 10.1073/pnas.1615484114, PMID 28265084.

Costa SKP, Camargo EA, Antunes E. Inflammatory action of secretory phospholipases A2 from snake venoms. Toxinology. 2017:35-52. doi: 10.1007/978-94-007-6452-1_10.

Moustafa IM, Foster S, Lyubimov AY, Vrielink A. Crystal structure of LAAO from Calloselasma rhodostoma with an L-phenylalanine substrate: insights into structure and mechanism. J Mol Biol. 2006;364(5):991-1002. doi: 10.1016/j.jmb.2006.09.032, PMID 17046020.

Hossain GS, Li J, Shin HD, Du G, Liu L, Chen J. L-amino acid oxidases from microbial sources: types, properties, functions, and applications. Appl Microbiol Biotechnol. 2014;98(4):1507-15. doi: 10.1007/s00253-013-5444-2, PMID 24352734.

Guo C, Liu S, Yao Y, Zhang Q, Sun MZ. Past decade study of snake venom L-amino acid oxidase. Toxicon. 2012;60(3):302-11. doi: 10.1016/j.toxicon.2012.05.001, PMID 22579637.

More S, Kiran K, Veena S, Gadag J. Purification of an L-amino acid oxidase from Bungarus caeruleus (Indian krait) venom. J Venom Anim Toxins Incl Trop Dis. 2010;16(1):60-76. doi: 10.1590/S1678-91992010005000002.

Fox JW. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases and phosphodiesterases. Toxicon. 2013;62:75-82. doi: 10.1016/j.toxicon.2012.09.009, PMID 23010165.

Tan KK, Bay BH, Gopalakrishnakone P. L-amino acid oxidase from snake venom and its anticancer potential. Toxicon. 2018;144:7-13. doi: 10.1016/j.toxicon.2018.01.015, PMID 29407871.

Georgieva D, Murakami M, Perband M, Arni R, Betzel C. The structure of a native l-amino acid oxidase, the major component of the Vipera ammodytes ammodytes venomic, reveals dynamic active site and quaternary structure stabilization by divalent ions. Mol Biosyst. 2011;7(2):379-84. doi: 10.1039/c0mb00101e, PMID 20938508.

Naumann GB, Silva LF, Silva L, Faria G, Richardson M, Evangelista K, Kohlhoff M, Gontijo CM, Navdaev A, de Rezende FF, Eble JA, Sanchez EF. Cytotoxicity and inhibition of platelet aggregation caused by an l-amino acid oxidase from Bothrops leucurus venom. Biochim Biophys Acta. 2011;1810(7):683-94. doi: 10.1016/j.bbagen.2011.04.003, PMID 21539897.

Pessatti M, Fontana JD, Furtado MF, Guimaraes MF, Zanette LR, Costa WT, Baron M. Screening of Bothrops snake venoms for L-amino acid oxidase activity. Appl Biochem Biotechnol. 1995;51-52:197-210. doi: 10.1007/BF02933424, PMID 7668847.

Fox JW, Serrano SM. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon. 2005;45(8):969-85. doi: 10.1016/j.toxicon.2005.02.012, PMID 15922769.

Casewell NR. On the ancestral recruitment of metalloproteinases into the venom of snakes. Toxicon. 2012;60(4):449-54. doi: 10.1016/j.toxicon.2012.02.006, PMID 22406471.

Ferreira BA, Deconte SR, De Moura FBR, Tomiosso TC, Clissa PB, Andrade SP, Araujo FA. Inflammation, angiogenesis and fibrogenesis are differentially modulated by distinct domains of the snake venom metalloproteinase jararhagin. Int J Biol Macromol. 2018;119:1179-87. doi: 10.1016/j.ijbiomac.2018.08.051, PMID 30102981.

Vaiyapuri S, Thiyagarajan N, Hutchinson EG, Gibbins JM. Sequence and phylogenetic analysis of viper venom serine proteases. Bioinformation. 2012;8(16):763-72. doi: 10.6026/97320630008763, PMID 23055627.

Serrano SMT. The long road of research on snake venom serine proteinases. Toxicon. 2013;62:19-26. doi: 10.1016/j.toxicon.2012.09.003, PMID 23010164.

Modahl CM, Frietze S, Mackessy SP. Transcriptome-facilitated proteomic characterization of rear-fanged snake venoms reveal abundant metalloproteinases with enhanced activity. J Proteomics. 2018;187:223-34. doi: 10.1016/j.jprot.2018.08.004, PMID 30092380.

Slagboom J, Kool J, Harrison RA, Casewell NR. Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise. Br J Haematol. 2017;177(6):947-59. doi: 10.1111/bjh.14591, PMID 28233897.

Wahby AF, el Mahdy el-SM, El-Mezayen HA, Salama WH, Abdel-Aty AM, Fahmy AS. Egyptian horned viper Cerastes cerastes venom hyaluronidase: purification, partial characterization and evidence for its action as a spreading factor. Toxicon. 2012;60(8):1380-9. doi: 10.1016/j.toxicon.2012.08.016, PMID 23000079.

Bordon KCF, Wiezel GA, Amorim FG, Arantes EC. Arthropod venom hyaluronidases: biochemical properties and potential applications in medicine and biotechnology. J Venom Anim Toxins Incl Trop Dis. 2015;21:43. doi: 10.1186/s40409-015-0042-7, PMID 26500679.

Mackessy SP. Handbook of venoms and toxins of reptiles. Taylor & Francis; 2009.

Ouyang C, Huang TF. Inhibition of platelet aggregation by 5′-nucleotidase purified from trimeresurus gramineus snake venom. Toxicon. 1983;21(4):491-501. doi: 10.1016/0041-0101(83)90127-7, PMID 6312633.

Gulland JM, Jackson EM. 5-nucleotidase. Biochem J. 1938;32(3):597-601. doi: 10.1042/bj0320597, PMID 16746659.

Jorge da Silva NJ, Aird SD. Prey specificity, comparative lethality and compositional differences of coral snake venoms. Comp Biochem Physiol C Toxicol Pharmacol. 2001;128(3):425-56. doi: 10.1016/s1532-0456(00)00215-5, PMID 11255115.

Zeller EA. The formation of pyrophosphate from adenosine triphosphate in the presence of a snake venom. Arch Biochem. 1950;28(1):138-9. PMID 14771934.

Iwanaga S, Suzuki T. Enzymes in snake venom, Snake venoms. Springer; 1979. p. 61-158.

Ouyang C, Huang TF. Platelet aggregation inhibitors from Agkistrodon acutus snake venom. Toxicon. 1986;24(11-12):1099-106. doi: 10.1016/0041-0101(86)90136-4, PMID 3031852.

Frobert Y, Creminon C, Cousin X, Remy MH, Chatel JM, Bon S, Bon C, Grassi J. Acetylcholinesterases from Elapidae snake venoms: biochemical, immunological and enzymatic characterization. Biochim Biophys Acta. 1997;1339(2):253-67. doi: 10.1016/s0167-4838(97)00009-5. PMID 9187246.

Kini RM, Doley R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon. 2010;56(6):855-67. doi: 10.1016/j.toxicon.2010.07.010, PMID 20670641.

Aird SD. The role of purine and pyrimidine nucleosides in snake venoms. In: Mackessy SP, editor, Handbook of venoms and toxins of reptiles. CRC Press; 2009. p. 393-431.

Nirthanan S, Gwee MC. Three-finger alpha-neurotoxins and the nicotinic acetylcholine receptor, forty years on. J Pharmacol Sci. 2004;94(1):1-17. doi: 10.1254/jphs.94.1, PMID 14745112.

Olamendi Portugal T, Batista CVF, Pedraza Escalona M, Restano Cassulini R, Zamudio FZ, Benard Valle M, de Roodt AR, Possani LD. New insights into the proteomic characterization of the coral snake Micrurus pyrrhocryptus venom. Toxicon. 2018;153:23-31. doi: 10.1016/j.toxicon.2018.08.003, PMID 30153434.

Dutta S, Chanda A, Kalita B, Islam T, Patra A, Mukherjee AK. Proteomic analysis to unravel the complex venom proteome of Eastern India Naja naja: correlation of venom composition with its biochemical and pharmacological properties. J Proteomics. 2017;156:29-39. doi: 10.1016/j.jprot.2016.12.018, PMID 28062377.

Slagboom J, Otvos RA, Cardoso FC, Iyer J, Visser JC, van Doodewaerd BR, McCleary RJR, Niessen WMA, Somsen GW, Lewis RJ, Kini RM, Smit AB, Casewell NR, Kool J. Neurotoxicity fingerprinting of venoms using on-line microfluidic achbp profiling. Toxicon. 2018;148:213-22. doi: 10.1016/j.toxicon.2018.04.022, PMID 29730150.

Ziganshin RH, Kovalchuk SI, Arapidi GP, Starkov VG, Hoang AN, Thi Nguyen TT, Nguyen KC, Shoibonov BB, Tsetlin VI, Utkin YN. Quantitative proteomic analysis of Vietnamese krait venoms: neurotoxins are the major components in Bungarus multicinctus and phospholipases a2 in Bungarus fasciatus. Toxicon. 2015;107(B):197-209. doi: 10.1016/j.toxicon.2015.08.026, PMID 26341420.

Rusmili MR, Yee TT, Mustafa MR, Hodgson WC, Othman I. Proteomic characterization and comparison of Malaysian Bungarus candidus and Bungarus fasciatus venoms. J Proteomics. 2014;110:129-44. doi: 10.1016/j.jprot.2014.08.001, PMID 25154052.

Oh AMF, Tan CH, Ariaranee GC, Quraishi N, Tan NH. Venomics of Bungarus caeruleus (Indian krait): comparable venom profiles, variable immunoreactivities among specimens from Sri Lanka, India and Pakistan. J Proteomics. 2017;164:1-18. doi: 10.1016/j.jprot.2017.04.018, PMID 28476572.

Tan CH, Wong KY, Tan KY, Tan NH. Venom proteome of the yellow-lipped sea krait, Laticauda colubrina from Bali: insights into subvenomic diversity, venom antigenicity and cross-neutralization by antivenom. J Proteomics. 2017;166:48-58. doi: 10.1016/j.jprot.2017.07.002, PMID 28688916.

Yamazaki Y, Morita T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon. 2004;44(3):227-31. doi: 10.1016/j.toxicon.2004.05.023, PMID 15302528.

Utkin YN, Osipov AV. Non-lethal polypeptide components in cobra venom. Curr Pharm Des. 2007;13(28):2906-15. doi: 10.2174/138161207782023757, PMID 17979735.

Yamazaki Y, Hyodo F, Morita T. Wide distribution of cysteine-rich secretory proteins in snake venoms: isolation and cloning of novel snake venom cysteine-rich secretory proteins. Arch Biochem Biophys. 2003;412(1):133-41. doi: 10.1016/s0003-9861(03)00028-6, PMID 12646276.

Saviola AJ, Modahl CM, Mackessy SP. Disintegrins of crotalus simus tzabcan venom: isolation, characterization and evaluation of the cytotoxic and anti-adhesion activities of tzabcanin, a new rgd disintegrin. Biochimie. 2015;116:92-102. doi: 10.1016/j.biochi.2015.07.005, PMID 26163300.

Bilgrami S, Yadav S, Kaur P, Sharma S, Perbandt M, Betzel C, Singh TP. Crystal structure of the disintegrin heterodimer from saw-scaled viper (Echis carinatus) at 1.9 a resolution. Biochemistry. 2005;44(33):11058-66. doi: 10.1021/bi050849y, PMID 16101289.

Kloog Y, Sokolovsky M. Similarities in mode and sites of action of sarafotoxins and endothelins. Trends Pharmacol Sci. 1989;10(6):212-4. doi: 10.1016/0165-6147(89)90261-7, PMID 2549664.

Vink S, Jin AH, Poth KJ, Head GA, Alewood PF. Natriuretic peptide drug leads from snake venom. Toxicon. 2012;59(4):434-45. doi: 10.1016/j.toxicon.2010.12.001, PMID 21147145.

Yoshimura M, Yasue H, Morita E, Sakaino N, Jougasaki M, Kurose M, Mukoyama M, Saito Y, Nakao K, Imura H. Hemodynamic, renal, and hormonal responses to brain natriuretic peptide infusion in patients with congestive heart failure. Circulation. 1991;84(4):1581-8. doi: 10.1161/01.cir.84.4.1581, PMID 1914098.

Kinnunen P, Vuolteenaho O, Ruskoaho H. Mechanisms of atrial and brain natriuretic peptide release from rat ventricular myocardium: effect of stretching. Endocrinology. 1993;132(5):1961-70. doi: 10.1210/endo.132.5.8477647, PMID 8477647.

Suga S, Itoh H, Komatsu Y, Ogawa Y, Hama N, Yoshimasa T, Nakao K. Cytokine-induced C-type natriuretic peptide (CNP) secretion from vascular endothelial cells-evidence for CNP as a novel autocrine/paracrine regulator from endothelial cells. Endocrinology. 1993;133(6):3038-41. doi: 10.1210/endo.133.6.8243333, PMID 8243333.

Koh CY, Kini RM. From snake venom toxins to therapeutics-cardiovascular examples. Toxicon. 2012;59(4):497-506. doi: 10.1016/j.toxicon.2011.03.017, PMID 21447352.

Takahashi H, Iwanaga S, Suzuki T. Isolation of a novel inhibitor of kallikrein, plasmin and trypsin from the venom of Russell’s viper (Vipera russelli). FEBS Lett. 1972;27(2):207-10. doi: 10.1016/0014-5793(72)80621-5, PMID 4541477.

Calvete JJ, Marcinkiewicz C, Sanz L. Snake venomics of Bitis gabonica gabonica. Protein family composition, subunit organization of venom toxins, and characterization of dimeric disintegrins bitisgabonin-1 and bitisgabonin-2. J Proteome Res. 2007;6(1):326-36. doi: 10.1021/pr060494k, PMID 17203976.

Earl STH, Richards R, Johnson LA, Flight S, Anderson S, Liao A, de Jersey J, Masci PP, Lavin MF. Identification and characterisation of kunitz-type plasma kallikrein inhibitors unique to Oxyuranus sp. snake venoms. Biochimie. 2012;94(2):365-73. doi: 10.1016/j.biochi.2011.08.003, PMID 21843588.

Shamsi TN, Parveen R, Fatima S. Characterization, biomedical and agricultural applications of protease inhibitors: a review. Int J Biol Macromol. 2016;91:1120-33. doi: 10.1016/j.ijbiomac.2016.02.069, PMID 26955746.

Possani LD, Martin BM, Yatani A, Mochca Morales J, Zamudio FZ, Gurrola GB, Brown AM. Isolation and physiological characterization of taicatoxin, a complex toxin with specific effects on calcium channels. Toxicon. 1992;30(11):1343-64. doi: 10.1016/0041-0101(92)90511-3, PMID 1485334.

Zupunski V, Kordis D, Gubensek F. Adaptive evolution in the snake venom Kunitz/BPTI protein family. FEBS Lett. 2003;547(1-3):131-6. doi: 10.1016/s0014-5793(03)00693-8, PMID 12860400.

Laskowski M, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49(1):593-626. doi: 10.1146/

Wordinger RJ, Clark AF. Growth factors and neurotrophic factors as targets. In: Yorio T, Clark AF, Wax MB, editors, Ocular therapeutics: Eye on new discoveries. Academic Press; 2008. p. 87-116.

Aloe L. Rita levi-montalcini: the discovery of nerve growth factor and modern neurobiology. Trends Cell Biol. 2004;14(7):395-9. doi: 10.1016/j.tcb.2004.05.011, PMID 15246433.

Cohen S, Levi Montalcini R. A nerve growth-stimulating factor isolated from snake venom. Proc Natl Acad Sci USA. 1956;42(9):571-4. doi: 10.1073/pnas.42.9.571, PMID 16589907.

Mannion RJ, Costigan M, Decosterd I, Amaya F, Ma QP, Holstege JC, Ji RR, Acheson A, Lindsay RM, Wilkinson GA, Woolf CJ. Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci USA. 1999;96(16):9385-90. doi: 10.1073/pnas.96.16.9385, PMID 10430952.

Kostiza T, Meier J. Nerve growth factors from snake venoms: chemical properties, mode of action and biological significance. Toxicon. 1996;34(7):787-806. doi: 10.1016/0041-0101(96)00023-2, PMID 8843580.

Otrock ZK, Makarem JA, Shamseddine AI. Vascular endothelial growth factor family of ligands and receptors: review [review]. Blood Cells Mol Dis. 2007;38(3):258-68. doi: 10.1016/j.bcmd.2006.12.003, PMID 17344076.

Yamazaki Y, Morita T. Molecular and functional diversity of vascular endothelial growth factors. Mol Divers. 2006;10(4):515-27. doi: 10.1007/s11030-006-9027-3, PMID 16972015.

Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: current status and potential. Bioorg Med Chem. 2018;26(10):2738-58. doi: 10.1016/j.bmc.2017.09.029, PMID 28988749.

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492, PMID 30207593.

Al-Sadoon MK, Abdel-Maksoud MA, Rabah DM, Badr G. Induction of apoptosis and growth arrest in human breast carcinoma cells by a snake (Walterinnesia aegyptia) venom combined with silica nanoparticles: crosstalk between Bcl2 and caspase 3. Cell Physiol Biochem. 2012;30(3):653-65. doi: 10.1159/000341446, PMID 22854437.

Neda A, Neda SK, Ata G, Ahmad TM, Mohamad G, Mohammad HP. A. crassicauda, M. eupeus and H. Lepturus scorpion venoms initiate a strong in vivo anticancer immune response in CT26-tumor mice model. Toxicon 2020;180:31-8.

Klein A, Capitanio JS, Maria DA, Ruiz IRG. Gene expression in SK-Mel-28 human melanoma cells treated with the snake venom jararhagin. Toxicon. 2011;57(1):1-8. doi: 10.1016/j.toxicon.2010.09.001, PMID 20851711.

Tsai PC, Fu YS, Chang LS, Lin SR. Taiwan cobra cardiotoxin III suppresses EGF/EGFR-mediated epithelial-to-mesenchymal transition and invasion of human breast cancer MDA-MB-231 cells. Toxicon. 2016;111:108-20. doi: 10.1016/j.toxicon.2016.01.051, PMID 26774845.

Salama WH, Ibrahim NM, El Hakim AE, Bassuiny RI, Mohamed MM, Mousa FM, Ali MM. L-amino acid oxidase from Cerastes vipera snake venom: isolation, characterization and biological effects on bacteria and tumor cell lines. Toxicon. 2018;150:270-9. doi: 10.1016/j.toxicon.2018.06.064, PMID 29898379.

Zainal Abidin SAZ, Rajadurai P, Hoque Chowdhury ME, Othman I, Naidu R. Cytotoxic, anti-proliferative and apoptosis activity of l-amino acid oxidase from Malaysian Cryptelytrops purpureomaculatus (CP-LAAO) venom on human colon cancer cells. Molecules. 2018;23(6):1388. doi: 10.3390/molecules23061388.

Mukherjee AK, Saviola AJ, Burns PD, Mackessy SP. Apoptosis induction in human breast cancer (MCF-7) cells by a novel venom L-amino acid oxidase (Rusvinoxidase) is independent of its enzymatic activity and is accompanied by caspase-7 activation and reactive oxygen species production. Apoptosis. 2015;20(10):1358-72. doi: 10.1007/s10495-015-1157-6, PMID 26319994.

Wang JH, Xie Y, Wu JC, Han R, Reid PF, Qin ZH, He JK. Crotoxin enhances the antitumor activity of gefinitib (Iressa) in SK-MES-1 human lung squamous carcinoma cells. Oncol Rep. 2012;27(5):1341-7. doi: 10.3892/or.2012.1677, PMID 22322185.

Lee HL, Park MH, Son DJ, Song HS, Kim JH, Ko SC, Song MJ, Lee WH, Yoon JH, Ham YW, Han SB, Hong JT. Anti-cancer effect of snake venom toxin through down regulation of AP-1 mediated PRDX6 expression. Oncotarget. 2015;6(26):22139-51. doi: 10.18632/oncotarget.4192, PMID 26061816.

Ebrahim K, Shirazi FH, Mirakabadi AZ, Vatanpour H. Cobra venom cytotoxins; apoptotic or necrotic agents? Toxicon. 2015;108:134-40. doi: 10.1016/j.toxicon.2015.09.017, PMID 26482932.

Azevedo FVPV, Lopes DS, Cirilo Gimenes SNC, Ache DC, Vecchi L, Alves PT, Guimaraes Dde O, Rodrigues RS, Goulart LR, Rodrigues Vde M, Yoneyama KA. Human breast cancer cell death induced by BnSP-6, a Lys-49 PLA₂ homologue from Bothrops pauloensis venom. Int J Biol Macromol. 2016;82:671-7. doi: 10.1016/j.ijbiomac.2015.10.080, PMID 26519876.

Geraghty L, Figtree GA, Schutte AE, Patel S, Woodward M, Arnott C. Cardiovascular disease in women: From pathophysiology to novel and emerging risk factors. Heart Lung Circ 2021;30(1):9-17.

Kini RM, Koh CY. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases. Biochem Pharmacol. 2020;181:114105. doi: 10.1016/j.bcp.2020.114105.

Evangelista IL, Martins AMC, Nascimento NRF, Havt A, Evangelista JSAM, de Noroes TBS, Toyama MH, Diz-Filho EB, Toyama Dde O, Fonteles MC, Monteiro HS. Renal and cardiovascular effects of Bothrops marajoensis venom and phospholipase A2. Toxicon. 2010;55(6):1061-70. doi: 10.1016/j.toxicon.2009.12.004, PMID 20036276.

Kodama RT, Cajado Carvalho D, Kuniyoshi AK, Kitano ES, Tashima AK, Barna BF, Takakura AC, Serrano SM, Dias-Da-Silva W, Tambourgi DV, Portaro FV. New proline-rich oligopeptides from the venom of African adders: insights into the hypotensive effect of the venoms. Biochim Biophys Acta. 2015;1850(6):1180-7. doi: 10.1016/j.bbagen.2015.02.005, PMID 25688758.

Lameu C, Pontieri V, Guerreiro JR, Oliveira EF, da Silva CA, Giglio JM, Melo RL, Campos RR, de Camargo AC, Ulrich H. Brain nitric oxide production by a proline-rich decapeptide from Bothrops jararaca venom improves baroreflex sensitivity of spontaneously hypertensive rats. Hypertens Res. 2010;33(12):1283-8. doi: 10.1038/hr.2010.208, PMID 21132021.

Maroko PR, Carpenter CB, Chiariello M, Fishbein MC, Radvany P, Knostman JD, Hale SL. Reduction by cobra venom factor of myocardial necrosis after coronary artery occlusion. J Clin Invest. 1978;61(3):661-70. doi: 10.1172/JCI108978, PMID 641147.

Crawford MH, Grover FL, Kolb WP, McMahan CA, O’Rourke RA, McManus LM, Pinckard RN. Complement and neutrophil activation in the pathogenesis of ischemic myocardial injury. Circulation. 1988;78(6):1449-58. doi: 10.1161/01.cir.78.6.1449, PMID 3191598.

Ianzer D, Xavier CH, Fraga FC, Lautner RQ, Guerreiro JR, Machado LT, Mendes EP, de Camargo AC, Santos RA. BPP-5a produces a potent and long-lasting NO-dependent antihypertensive effect. Ther Adv Cardiovasc Dis. 2011;5(6):281-95. doi: 10.1177/1753944711427318, PMID 22032921.

Chaisakul J, Rusmili MRA, Hodgson WC, Hatthachote P, Suwan K, Inchan A, Chanhome L, Othman I, Chootip K. A pharmacological examination of the cardiovascular effects of Malayan krait (Bungarus candidus) venoms. Toxins (Basel). 2017;9(4):122. doi: 10.3390/toxins9040122, PMID 28353659.

Vaiyapuri S, Harrison RA, Bicknell AB, Gibbins JM, Hutchinson G. Purification and functional characterisation of rhinocerase, a novel serine protease from the venom of Bitis gabonica rhinoceros. PLOS ONE. 2010;5(3):e9687. doi: 10.1371/journal.pone.0009687, PMID 20300193.

Sun Y, Zhou H, Yang BX. Drug discovery for polycystic kidney disease. Acta Pharmacol Sin. 2011;32(6):805-16. doi: 10.1038/aps.2011.29, PMID 21642949.

De Roodt AR, Lago NR, Stock RP. Myotoxicity and nephrotoxicity by micrurus venoms in experimental envenomation. Toxicon. 2012;59(2):356-64. doi: 10.1016/j.toxicon.2011.11.009, PMID 22133570.

Faiz A, Ghose A, Ahsan F, Rahman R, Amin R, Hassan MU, Chowdhury AW, Kuch U, Rocha T, Harris JB, Theakston RD, Warrell DA. The greater black krait (Bungarus niger), a newly recognized cause of neuro-myotoxic snake bite envenoming in Bangladesh. Brain. 2010;133(11):3181-93. doi: 10.1093/brain/awq265, PMID 20855420.

Lomonte B, Rey Suarez P, Fernandez J, Sasa M, Pla D, Vargas N, Benard Valle M, Sanz L, Correa Netto C, Nunez V, Alape Giron A, Alagon A, Gutierrez JM, Calvete JJ. Venoms of Micrurus coral snakes: evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon. 2016;122:7-25. doi: 10.1016/j.toxicon.2016.09.008, PMID 27641749.

Ciolek J, Reinfrank H, Quinton L, Viengchareun S, Stura EA, Vera L, Sigismeau S, Mouillac B, Orcel H, Peigneur S, Tytgat J, Droctove L, Beau F, Nevoux J, Lombes M, Mourier G, De Pauw E, Servent D, Mendre C, Witzgall R, Gilles N. Green mamba peptide targets type-2 vasopressin receptor against polycystic kidney disease. Proc Natl Acad Sci USA. 2017;114(27):7154-9. doi: 10.1073/pnas.1620454114, PMID 28630289.

Kawazu T, Nishino T, Obata Y, Furusu A, Miyazaki M, Abe K, Koji T, Kohno S. Production and degradation of extracellular matrix in reversible glomerular lesions in rat model of habu snake venom-induced glomerulonephritis. Med Mol Morphol. 2012;45(4):190-8. doi: 10.1007/s00795-011-0559-y, PMID 23224597.

Abe Yoshio Y, Abe K, Miyazaki M, Furusu A, Nishino T, Harada T, Koji T, Kohno S. Involvement of bone marrow-derived endothelial progenitor cells in glomerular capillary repair in habu snake venom-induced glomerulonephritis. Virchows Arch. 2008;453(1):97-106. doi: 10.1007/s00428-008-0618-5, PMID 18551312.

Sugimoto K, Fujise Y, Shibata K, Komori Y, Nikai T, Sugihara H, Sakurai N. Effects of a prescription of Chinese herbal medicine on snake venom-induced nephropathy in mice. Biol Pharm Bull. 1996;19(4):587-92. doi: 10.1248/bpb.19.587, PMID 8860964.

Linardi A, Rocha e Silva TAA, Miyabara EH, Franco Penteado CF, Cardoso KC, Boer PA, Moriscot AS, Gontijo JA, Joazeiro PP, Collares Buzato CB, Hyslop S. Histological and functional renal alterations caused by Bothrops alternatus snake venom: expression and activity of Na+/K+-ATPase. Biochim Biophys Acta. 2011;1810(9):895-906. doi: 10.1016/j.bbagen.2011.06.006, PMID 21704674.

Barbosa PSF, Havt A, Faco PEG, Sousa TM, Bezerra ISAM, Fonteles MC, Toyama MH, Marangoni S, Novello JC, Monteiro HS. Renal toxicity of Bothrops moojeni snake venom and its main myotoxins. Toxicon. 2002;40(10):1427-35. doi: 10.1016/s0041-0101(02)00156-3, PMID 12368112.

Dantas RT, Jorge ARC, Jorge RJB, de Menezes RRPPB, Lima DB, Torres AFC, Toyama MH, Monteiro HS, Martins AM. L-amino acid oxidase from Bothrops marajoensis causes nephrotoxicity in isolated perfused kidney and cytotoxicity in MDCK renal cells. Toxicon. 2015;104:52-6. doi: 10.1016/j.toxicon.2015.08.007, PMID 26263888.

Braga JRM, Jorge ARC, Marinho AD, Silveira JAM, Nogueira Junior FA, Valle MB, Alagon A, de Menezes RRPPB, Martins AMC, Feijao LX, Monteiro HSA, Jorge RJB. Renal effects of venoms of mexican coral snakes Micrurus browni and Micrurus laticollaris. Toxicon. 2020;181:45-52. doi: 10.1016/j.toxicon.2020.04.095, PMID 32339535.

Ramakrishnan S, Bafadhel M, Russell R. Chronic obstructive pulmonary disease: management of chronic disease. Medicine. 2020;48(5):333-6. doi: 10.1016/j.mpmed.2020.02.002.

Gutierrez JM, Sanz L, Escolano J, Fernandez J, Lomonte B, Angulo Y, Rucavado A, Warrell DA, Calvete JJ. Snake venomics of the lesser antillean pit vipers Bothrops caribbaeus and Bothrops lanceolatus: correlation with toxicological activities and immunoreactivity of a heterologous antivenom. J Proteome Res. 2008;7(10):4396-408. doi: 10.1021/pr8003826, PMID 18785768.

Malbranque S, Piercecchi Marti MD, Thomas L, Barbey C, Courcier D, Bucher B, Ridarch A, Smadja D, Warrell DA. Fatal diffuse thrombotic microangiopathy after a bite by the “Fer-de-Lance” pit viper (Bothrops lanceolatus) of martinique. Am J Trop Med Hyg. 2008;78(6):856-61. PMID 18541759.

Terra RMS, Pinto AF, Guimaraes JA, Fox JW. Proteomic profiling of snake venom metalloproteinases (SVMPs): insights into venom induced pathology. Toxicon. 2009;54(6):836-44. doi: 10.1016/j.toxicon.2009.06.010, PMID 19539639.

Lin X, Liang XX, Tang JJ, Chen JS, Qiu PX, Yan GM. The effect of the fibrinolytic enzyme FIIa from Agkistrodon acutus venom on acute pulmonary thromboembolism. Acta Pharmacol Sin. 2011;32(2):239-44. doi: 10.1038/aps.2010.193, PMID 21293476.

Escalante T, Nunez J, Moura da Silva AM, Rucavado A, Theakston RDG, Gutierrez JM. Pulmonary hemorrhage induced by jararhagin, a metalloproteinase from Bothrops jararaca snake venom. Toxicol Appl Pharmacol. 2003;193(1):17-28. doi: 10.1016/s0041-008x(03)00337-5, PMID 14613713.

Luo S, Wang R, Jiang W, Lin X, Qiu P, Yan G. A novel recombinant snake venom metalloproteinase from Agkistrodon acutus protects against taurocholate-induced severe acute pancreatitis in rats. Biochimie. 2010;92(10):1354-61. doi: 10.1016/j.biochi.2010.06.018, PMID 20600562.

Herrera C, Rucavado A, Warrell DA, Gutierrez JM. Systemic effects induced by the venom of the snake Bothrops caribbaeus in a murine model. Toxicon. 2013;63:19-31. doi: 10.1016/j.toxicon.2012.10.023, PMID 23159397.

Vallat JM, Goizet C, Tazir M, Couratier P, Magy L, Mathis S. Classifications of neurogenetic diseases: an increasingly complex problem. Rev Neurol (Paris). 2016;172(6-7):339-49. doi: 10.1016/j.neurol.2016.04.005, PMID 27240993.

Wexler E. Clinical neurogenetics: behavioral management of inherited neurodegenerative disease. Neurol Clin. 2013;31(4):1121-44. doi: 10.1016/j.ncl.2013.04.016, PMID 24176427.

Yu S, Wang X, He X, Wang Y, Gao S, Ren L, Shi Y. Curcumin exerts anti-inflammatory and antioxidative properties in 1-methyl-4-phenylpyridinium ion (MPP (+))-stimulated mesencephalic astrocytes by interference with TLR4 and downstream signaling pathway. Cell Stress Chaperones. 2016;21(4):697-705. doi: 10.1007/s12192-016-0695-3, PMID 27164829.

Bernardes CP, Santos NAG, Sisti FM, Ferreira RS, Santos Filho NA, Cintra ACO, Cilli EM, Sampaio SV, Santos AC. A synthetic snake-venom-based tripeptide (Glu–Val–Trp) protects PC12 cells from MPP+toxicity by activating the NGF-signaling pathway. Peptides. 2018;104:24-34. doi: 10.1016/j.peptides.2018.04.012, PMID 29684590.

Querobino SM, Carrettiero DC, Costa MS, Alberto Silva C. Neuroprotective property of low molecular weight fraction from B. jararaca snake venom in H2O2-induced cytotoxicity in cultured hippocampal cells. Toxicon. 2017;129:134-43. doi: 10.1016/j.toxicon.2017.02.015, PMID 28216408.

Heus F, Vonk F, Otvos RA, Bruyneel B, Smit AB, Lingeman H, Richardson M, Niessen WM, Kool J. An efficient analytical platform for on-line microfluidic profiling of neuroactive snake venoms towards nicotinic receptor affinity. Toxicon. 2013;61:112-24. doi: 10.1016/j.toxicon.2012.11.002, PMID 23159399.

Waqar M, Batool S. In silico analysis of binding of neurotoxic venom ligands with acetylcholinesterase for therapeutic use in treatment of Alzheimer’s disease. J Theor Biol. 2015;372:107-17. doi: 10.1016/j.jtbi.2015.02.028, PMID 25747777.

Wijeyewickrema LC, Gardiner EE, Gladigau EL, Berndt MC, Andrews RK. Nerve growth factor inhibits metalloproteinase-disintegrins and blocks ectodomain shedding of platelet glycoprotein VI. J Biol Chem. 2010;285(16):11793-9. doi: 10.1074/jbc.M110.100479, PMID 20164177.

Bhattacharjee P, Bhattacharyya D. Factor V activator from Daboia russelli russelli venom destabilizes β-amyloid aggregate, the hallmark of Alzheimer disease. J Biol Chem. 2013;288(42):30559-70. doi: 10.1074/jbc.M113.511410, PMID 23986449.

Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLOS ONE. 2013;8(1):e54059. doi: 10.1371/journal.pone.0054059, PMID 23342074.

Deplazes E. Molecular simulations of venom peptide-membrane interactions: progress and challenges. Pept Sci. 2018;110(3):1-9. doi: 10.1002/pep2.24060.

Dai GL, He JK, Xie Y, Han R, Qin ZH, Zhu LJ. Therapeutic potential of Naja naja atra venom in a rat model of diabetic nephropathy. Biomed Environ Sci. 2012;25(6):630-8. doi: 10.3967/0895-3988.2012.06.004, PMID 23228832.

Li S, Hong Y, Jin X, Zhang G, Hu Z, Nie L. A new Agkistrodon halys venom-purified protein C activator prevents myocardial fibrosis in diabetic rats. Croat Med J. 2015;56(5):439-46. doi: 10.3325/cmj.2015.56.439, PMID 26526881.

Mukai E, Ohta T, Kawamura H, Lee EY, Morita A, Sasase T, Miyajima K, Inagaki N, Iwanaga T, Miki T. Enhanced vascular endothelial growth factor signaling in islets contributes to β cell injury and consequential diabetes in spontaneously diabetic torii rats. Diabetes Res Clin Pract. 2014;106(2):303-11. doi: 10.1016/j.diabres.2014.08.023, PMID 25262109.

Conlon JM, Attoub S, Musale V, Leprince J, Casewell NR, Sanz L, Calvete JJ. Isolation and characterization of cytotoxic and insulin-releasing components from the venom of the black-necked spitting cobra Naja nigricollis (Elapidae). Toxicon X. 2020;6:100030. doi: 10.1016/j.toxcx.2020.100030.

Lee YM, Cho SN, Son E, Song CH, Kim DS. Apamin from bee venom suppresses inflammation in a murine model of gouty arthritis. J Ethnopharmacol. 2020;257:112860. doi: 10.1016/j.jep.2020.112860.

Pal SK, Gomes A, Dasgupta SC, Gomes A. Snake venom as therapeutic agents: from toxin to drug development. Indian J Exp Biol. 2002;40(12):1353-8. PMID 12974396.

Gomes A, Bhattacharya S, Chakraborty M, Bhattacharjee P, Mishra R, Gomes A. Anti-arthritic activity of Indian monocellate cobra (Naja kaouthia) venom on adjuvant induced arthritis. Toxicon. 2010;55(2-3):670-3. doi: 10.1016/j.toxicon.2009.10.007, PMID 19825384.

Gomes A, Datta P, Das T, Biswas AK, Gomes A. Anti arthritic and anti inflammatory activity of a cytotoxic protein NN-32 from Indian spectacle cobra (Naja naja) venom in male albino rats. Toxicon. 2014;90:106-10. doi: 10.1016/j.toxicon.2014.07.002, PMID 25026566.

Smith GM, Ward RL, McGuigan L, Rajkovic IA, Scott KF. Measurement of human phospholipase A2 in arthritis plasma using a newly developed sandwich ELISA. Br J Rheumatol. 1992;31(3):175-8. doi: 10.1093/rheumatology/31.3.175, PMID 1540785.

Vadas P, Pruzanski W, Kim J, Fornasier V. The proinflammatory effect of intra-articular injection of soluble human and venom phospholipase A2. Am J Pathol. 1989;134(4):807-11. PMID 2705507.

Gomes A, Saha PP, Bhowmik T, Dasgupta AK, Dasgupta SC. Protection against osteoarthritis in experimental animals by nanogold conjugated snake venom protein toxin gold nanoparticle-Naja kaouthia cytotoxin 1. Indian J Med Res. 2016;144(6):910-7. doi: 10.4103/ijmr.IJMR_1078_14, PMID 28474628.

Fernandes CM, Pereira Teixeira Cde F, Leite ACRM, Gutierrez JM, Rocha FAC. The snake venom metalloproteinase BaP1 induces joint hypernociception through TNF-α and PGE2-dependent mechanisms. Br J Pharmacol. 2007;151(8):1254-61. doi: 10.1038/sj.bjp.0707351, PMID 17592506.

Strbo N, Yin N, Stojadinovic O. Innate and adaptive immune responses in wound epithelialization. Adv Wound Care (New Rochelle). 2014;3(7):492-501. doi: 10.1089/wound.2012.0435, PMID 25032069.

Echeverría S, Leiguez E, Guijas C, do Nascimento NG, Acosta O, Teixeira C, Leiva LC, Rodriguez JP. Evaluation of pro-inflammatory events induced by Bothrops alternatus snake venom. Chem Biol Interact. 2018;281:24-31. doi: 10.1016/j.cbi.2017.12.022, PMID 29248447.

Zheng Z, Jiang H, Huang Y, Wang J, Qiu L, Hu Z, Ma X, Lu Y. Screening of an anti-inflammatory peptide from Hydrophis cyanocinctus and analysis of its activities and mechanism in DSS-induced acute colitis. Sci Rep. 2016;6:25672. doi: 10.1038/srep25672, PMID 27158082.

Patrao Neto FC, Tomaz MA, Strauch MA, Monteiro Machado M, Rocha JR, Borges PA, Calil Elias S, Melo PA. Dexamethasone antagonizes the in vivo myotoxic and inflammatory effects of bothrops venoms. Toxicon. 2013;69:55-64. doi: 10.1016/j.toxicon.2013.01.023. PMID 23416798.

Wanderley CWS, Silva CMS, Wong DVT, Ximenes RM, Morelo DFC, Cosker F, Aragao KS, Fernandes C, Palheta Junior RC, Havt A, Brito GA, Cunha FQ, Ribeiro RA, Lima Junior RC. Bothrops jararacussu snake venom-induces a local inflammatory response in a prostanoid- and neutrophil-dependent manner. Toxicon. 2014;90:134-47. doi: 10.1016/j.toxicon.2014.08.001, PMID 25127849.

Giannotti KC, Leiguez E, de Carvalho AEZd, Nascimento NG, Matsubara MH, Fortes Dias CL, Moreira V, Teixeira C. A snake venom group IIA PLA2 with immunomodulatory activity induces formation of lipid droplets containing 15-d-PGJ2 in macrophages. Sci Rep. 2017;7(1):4098. doi: 10.1038/s41598-017-04498-8.

Silva MC, Sales Campos H, Oliveira CJF, Silva TL, França FBF, Oliveira F, Mineo TWP, Mineo JR. Treatment with a zinc metalloprotease purified from Bothrops moojeni snake venom (BmooMP-alpha-I) reduces the inflammation in an experimental model of dextran sulfate sodium-induced colitis. Mediators Inflamm. 2019;2019:5195134. doi: 10.1155/2019/5195134.

Wang N, Huang Y, Li A, Jiang H, Wang J, Li J, Qiu L, Li K, Lu Y. Hydrostatin-TL1, an anti-inflammatory active peptide from the venom gland of Hydrophis cyanocinctus in the South China sea. Int J Mol Sci. 2016;17(11):1940. doi: 10.3390/ijms17111940, PMID 27879679.

Upadhyay RK. Animal venom derived toxins are novel analgesics for treatment of arthritis. J Mol Sci. 2018;2:6-13.

Gazerani P, Cairns BE. Venom-based biotoxins as potential analgesics. Expert Rev Neurother. 2014;14(11):1261-74. doi: 10.1586/14737175.2014.962518, PMID 25234848.

Zhang Y, Jiang B, Li W, Zhou C, Ji F, Xie Q, Sun X, An L, Bao Y. Mechanisms of analgesic action of Gln49-PLA(2) from gloydius ussurensis snake venom. Appl Biochem Biotechnol. 2010;160(3):773-9. doi: 10.1007/s12010-009-8573-4, PMID 19277489.

Chacon F, Oviedo A, Escalante T, Solano G, Rucavado A, Gutierrez JM. The lethality test used for estimating the potency of antivenoms against Bothrops asper snake venom: pathophysiological mechanisms, prophylactic analgesia, and a surrogate in vitro assay. Toxicon. 2015;93:41-50. doi: 10.1016/j.toxicon.2014.11.223, PMID 25447772.

Picanço LC, Bittencourt JAHM, Henriques SVC, Da Silva JS, Oliveira JMS, Ribeiro JR, Sanjay AB, Carvalho JC, Stien D, Silva JO. Pharmacological activity of costus spicatus in experimental Bothrops atrox envenomation. Pharm Biol. 2016;54(10):2103-10. doi: 10.3109/13880209.2016.1145703, PMID 27306958.



How to Cite

RAJAN, S. S., P. SUBRAMANIAN, and J. P. J. MERLIN. “SNAKE VENOM-DERIVED PEPTIDES AS PROSPECTIVE PHARMACOLOGICAL TOOLS: RECENT TRENDS”. International Journal of Current Pharmaceutical Research, vol. 14, no. 1, Jan. 2022, pp. 1-14, doi:10.22159/ijcpr.2022v14i1.44106.



Review Article(s)