INTRANASAL DELIVERY IN MANAGING ANTIBIOTIC RESISTANCE IN ‘BRAIN INFECTIONS’

Authors

  • IBRAHIM AMINU SHEHU School of Allied Health Sciences, Sharda University, Knowledge Park III, Greater Noida 201306, UP. India
  • USMAN MUSA SHEHU School of Allied Health Sciences, Sharda University, Knowledge Park III, Greater Noida 201306, UP. India
  • APARNA DATTA Department of Pharmaceutical Technology, School of Health Science, NSHM Knowledge Campus, Kolkata 700053, W. B., India

DOI:

https://doi.org/10.22159/ijcpr.2022v14i2.1559

Keywords:

Antibiotic-resistance, Brain infection, Physiological barriers, Nose-to-brain delivery, Intranasal delivery

Abstract

According to World Health Organization, WHO, antibiotic resistance is one of the biggest threats to global health, food security and development today. The means of delivering antibiotics to treat several brain infections, especially meningitis and encephalitis, have been inherently difficult, due to the presence of highly protective physiological barriers, mainly the blood-brain barrier (BBB), cerebrospinal fluid (CSF) that impairs the efficacy and bioavailability of antibiotics from reaching the susceptive organism. Many attempts have been made to optimize the therapeutic prognosis of such infections through the parenteral and intrathecal route of administration. These alternative routes have incited inadequate efficacy along with associated adverse effects. However, scientists have now considered the intranasal route (non-invasive) as a breakthrough to such inherent challenges. Moreover, several in vivo and ex vivo studies suggested evidence of the effectiveness of nose-to-brain delivery in treating bacterial and viral infections, thereby limiting the chance of antibiotic resistance. Targeting the multidrug resistance gram-positive and negative bacterias, a study was reported using nanoemulsion of Syzygiumaromaticum and Thymus vulgaris essential oils via the intranasal route. The result indicated the maximum inhibition of multi-drug resistance bacterias upon intranasal administration. Therefore, this study focuses to highlight the potential of intranasal delivery in the optimization of CNS infections and the prevention of antibiotic resistance.

Downloads

Download data is not yet available.

References

Meningitis and encephalitis fact sheet | National institute of neurological disorders and stroke, (n.d.). Available from: https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Meningitis-and-Encephalitis-Fact-Sheet. [Last accessed on 27 Aug 2020]

Diekema DJ, Richter SS, Heilmann KP, Dohrn CL, Riahi F, Tendolkar S, McDanel JS, Doern GV. Continued emergence of USA300 methicillin-resistant Staphylococcus aureus in the United States: results from a nationwide surveillance study. Infect Control Hosp Epidemiol. 2014 Mar 1;35(3):285-92. doi: 10.1086/675283, PMID 24521595.

Infections of the nervous system, (n.d.). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401822/. [Last accessed on 27 Aug 2020]

Rushing EJ, Burns DK. Infections of the nervous system. Neuroimaging Clin N Am. 2001;11(1):1-13. doi: 10.1016/j.nic.2011.07.012. PMID 11331225.

Kourtis AP, Hatfield K, Baggs J, Mu Y, See I, Epson E, Nadle J, Kainer MA, Dumyati G, Petit S, Ray SM, Emerging Infections Program MRSA author group, Ham D, Capers C, Ewing H, Coffin N, McDonald LC, Jernigan J, Cardo D. Vital signs: epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible staphylococcus aureus bloodstream infections-United States. MMWR Morb Mortal Wkly Rep. 2019 Mar 8;68(9):214-9. doi: 10.15585/mmwr.mm6809e1, PMID 30845118.

Ghosh C, Sarkar P, Issa R, Haldar J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol. 2019 Apr 1;27(4):323-38. doi: 10.1016/j.tim.2018.12.010, PMID 30683453.

Daum RS, Spellberg B. Progress toward a staphylococcus aureus vaccine. Clin Infect Dis. 2012 Feb 15;54(4):560-7. doi: 10.1093/cid/cir828, PMID 22186773.

Livorsi DJ, Chorazy ML, Schweizer ML, Balkenende EC, Blevins AE, Nair R, Samore MH, Nelson RE, Khader K, Perencevich EN. A systematic review of the epidemiology of carbapenem-resistant enterobacteriaceae in the United States. Antimicrob Resist Infect Control. 2018 Apr 24;7:55. doi: 10.1186/s13756-018-0346-9, PMID 29719718.

Chaud MV, Rios AC, dos Santos CA, de Barros CT, de Souza JF, Alves TFR. Nanostructure self-assembly for direct nose-to-brain drug delivery: a novel approach for cryptococcal meningitis. Nanomycotoxicology. 2020:449-80.

Das M. Does the targeted delivery of theranostic carbon nanotubes have potential as a valid anticancer strategy? Ther Deliv. 2014;5(1):1-5. doi: 10.4155/tde.13.123, PMID 24341809.

Hanson LR, Frey WH. Intranasal delivery bypasses the blood–brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008;9.

WHO. Global priority list of antibiotic-resistant bat ceria to guide research, discovery, and development of new antibiotics. WHO; 2017.

Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016 Apr;4(2):VMBF-0016. doi: 10.1128/microbiolspec.VMBF-0016-2015, PMID 27227291.

CDC. About antimicrobial resistance | antibiotic/antimicrobial resistance | CDC, Cdc Ncezid Dhqp; 2017.

Normark BH, Normark S. Evolution and spread of antibiotic resistance. J Intern Med. 2002 Aug 1;252(2):91-106. doi: 10.1046/j.1365-2796.2002.01026.x, PMID 12190884.

CDC. Antibiotic resistance threats in the United States. Current; 2013.

Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14(5):320-30. doi: 10.1038/nrmicro.2016.34, PMID 27080241.

Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017 May 1;41(3):276-301. doi: 10.1093/femsre/fux010, PMID 28369412.

MacFadden DR, McGough SF, Fisman D, Santillana M, Brownstein JS. Antibiotic resistance increases with local temperature. Nat Clim Change. 2018 May 21;8(6):510-4. doi: 10.1038/s41558-018-0161-6, PMID 30369964.

Lima TB, Pinto MF, Ribeiro SM, de Lima LA, Viana JC, Gomes Junior N, Candido Ede S, Dias SC, Franco OL. Bacterial resistance mechanism: what proteomics can elucidate. FASEB J. 2013 Apr 1;27(4):1291-303. doi: 10.1096/fj.12-221127, PMID 23349550.

Psimadas D, Georgoulias P, Valotassiou V, Loudos G. Molecular nanomedicine towards cancer: ¹¹¹In-labeled nanoparticles. J Pharm Sci. 2012 Jul 1;101(7):2271-80. doi: 10.1002/jps.23146, PMID 22488174.

Djupesland PG, Messina JC, Mahmoud RA. The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview. Ther Deliv. 2014 Jun 1;5(6):709-33. doi: 10.4155/tde.14.41, PMID 25090283.

Thwala LN, Preat V, Csaba NS. Emerging delivery platforms for mucosal administration of biopharmaceuticals: a critical update on nasal, pulmonary and oral routes. Expert Opin Drug Deliv. 2017 Jan 1;14(1):23-36. doi: 10.1080/17425247.2016.1206074, PMID 27351299.

Talegaonkar S, Mishra PR. Intranasal delivery: an approach to bypass the blood brain barrier. Indian J Pharmacol. 2004;36(3):140-7.

Gizurarson S. Anatomical and histological factors affecting intranasal drug and vaccine delivery. Curr Drug Deliv. 2012;9(6):566-82. doi: 10.2174/156720112803529828, PMID 22788696.

Wen MM. Olfactory targeting through intranasal delivery of biopharmaceutical drugs to the brain: current development. Discov Med. 2011 Jun 1;11(61):497-503. PMID 21712015.

Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018 Feb 1;195:44-52. doi: 10.1016/j.lfs.2017.12.025, PMID 29277310.

Rahisuddin SPK, Garg G, Salim M. Review on nasal drug delivery system with recent advancement. Int J Pharm Pharm Sci. 2011 Oct 15;3(2):6-11.

Banks WA, During MJ, Niehoff ML. Brain uptake of the glucagon-like Peptide-1 antagonist exendin(9-39) after intranasal administration. J Pharmacol Exp Ther. 2004;309(2):469-75. doi: 10.1124/jpet.103.063222, PMID 14724226.

Charlton ST, Whetstone J, Fayinka ST, Read KD, Illum L, Davis SS. Evaluation of direct transport pathways of glycine receptor antagonists and an angiotensin antagonist from the nasal cavity to the central nervous system in the rat model. Pharm Res. 2008 Jul;25(7):1531-43. doi: 10.1007/s11095-008-9550-2, PMID 18293062.

Dufes C, Olivier JC, Gaillard F, Gaillard A, Couet W, Muller JM. Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats. Int J Pharm. 2003 Apr 14;255(1-2):87-97. doi: 10.1016/s0378-5173(03)00039-5, PMID 12672605.

St John JA, Walkden H, Nazareth L, Beagley KW, Ulett GC, Batzloff MR, Beacham IR, Ekberg JAK. Burkholderia pseudomallei rapidly infects the brain stem and spinal cord via the trigeminal nerve after intranasal inoculation. Infect Immun. 2016 Sep;84(9):2681-8. doi: 10.1128/IAI.00361-16, PMID 27382023.

Pardridge WM, Boado RJ. Reengineering biopharmaceuticals for targeted delivery across the blood–brain barrier. Methods Enzymol. 2012;503:269-92. doi: 10.1016/B978-0-12-396962-0.00011-2, PMID 22230573.

Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazu V, Borm P, Estrada G, Ntziachristos V, Razansky D. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood–brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol. 2010 Mar 3;7:3. doi: 10.1186/1743-8977-7-3, PMID 20199661.

Rinaldi F, Oliva A, Sabatino M, Imbriano A, Hanieh PN, Garzoli S, Mastroianni CM, De Angelis M, Miele MC, Arnaut M, Di Timoteo F, Marianecci C, Ragno R, Carafa M. Antimicrobial essential oil formulation: chitosan coated nanoemulsions for nose to brain delivery. Pharmaceutics. 2020 Jul 1;12(7):678. doi: 10.3390/pharmaceutics12070678, PMID 32709076.

Manda P, Hargett JK, Vaka SRK, Repka MA, Murthy SN. Delivery of cefotaxime to the brain via intranasal administration. Drug Dev Ind Pharm. 2011;37(11):1306-10. doi: 10.3109/03639045.2011.571696, PMID 21702731.

Usman F, Khalil R, Ul-Haq Z, Nakpheng T, Srichana T. Bioactivity, safety, and efficacy of amphotericin B nanomicellar aerosols using sodium deoxycholate sulfate as the lipid carrier. AAPS PharmSciTech. 2018 Jul 1;19(5):2077-86. doi: 10.1208/s12249-018-1013-4, PMID 29691753.

Gangadhar KN, Adhikari K, Srichana T. Synthesis and evaluation of sodium deoxycholate sulfate as a lipid drug carrier to enhance the solubility, stability and safety of an amphotericin B inhalation formulation. Int J Pharm. 2014 Aug 25;471(1-2):430-8. doi: 10.1016/j.ijpharm.2014.05.066, PMID 24907597.

Lim ST, Forbes B, Berry DJ, Martin GP, Brown MB. In vivo evaluation of novel hyaluronan/chitosan microparticulate delivery systems for the nasal delivery of gentamicin in rabbits. Int J Pharm. 2002 Jan 1;231(1):73-82. doi: 10.1016/s0378-5173(01)00873-0, PMID 11719016.

Zwijnenburg PJG, van der Poll T, Florquin S, van Deventer SJH, Roord JJ, van Furth AM. Experimental pneumococcal meningitis in mice: a model of intranasal infection. J Infect Dis. 2001 Apr 1;183(7):1143-6. doi: 10.1086/319271, PMID 11237845.

Sakane T, Akizuki M, Yoshida M, Yamashita S, Nadai T, Hashida M, Sezaki H. Transport of cephalexin to the cerebrospinal fluid directly from the nasal cavity. J Pharm Pharmacol. 1991 Jun 1;43(6):449-51. doi: 10.1111/j.2042-7158.1991.tb03510.x, PMID 1681064.

Sousa J, Alves G, Fortuna A, Falcao A. Intranasal delivery of topically-acting levofloxacin to rats: a proof-of-concept pharmacokinetic study. Pharm Res. 2017;34(11):2260-9. doi: 10.1007/s11095-017-2232-1, PMID 28748398.

Karunasagar I, Ryder J, Ababouch L, Balaban M. Minimising antimicrobial use in aquaculture and improving food safety. FAO Fish Aquac Proc. 2012.

Mitsakakis K, Kaman WE, Elshout G, Specht M, Hays JP. Challenges in identifying antibiotic resistance targets for point-of-care diagnostics in general practice. Future Microbiol. 2018;13(10):1157-64. doi: 10.2217/fmb-2018-0084, PMID 30113214.

O’Morain C, Montague S. Challenges to therapy in the future. Helicobacter. 2000;5Suppl 1:S23-6, discussion S27. doi: 10.1046/j.1523-5378.2000.0050s1023.x, PMID 10828751.

Putheti RR, Patil MC, Obire O. Nasal Drug delivery in pharmaceutical and biotechnology: present and future. Japan Science and Technology (Corporation); 2009.

Comfort C, Garrastazu G, Pozzoli M, Sonvico F. Opportunities and challenges for the nasal administration of nanoemulsions. Curr Top Med Chem. 2015;15(4):356-68. doi: 10.2174/1568026615666150108144655, PMID 25579345.

Yusuf H, Kett V. Current prospects and future challenges for nasal vaccine delivery. Hum Vaccin Immunother. 2017 Jan 13;13(1):34-45. doi: 10.1080/21645515.2016.1239668, PMID 27936348.

Published

15-03-2022

How to Cite

SHEHU, I. A., U. M. SHEHU, and A. DATTA. “INTRANASAL DELIVERY IN MANAGING ANTIBIOTIC RESISTANCE IN ‘BRAIN INFECTIONS’”. International Journal of Current Pharmaceutical Research, vol. 14, no. 2, Mar. 2022, pp. 1-4, doi:10.22159/ijcpr.2022v14i2.1559.

Issue

Section

Review Article(s)