

Original Article

OPTIMIZATION TECHNIQUE FOR SOFTWARE COST ESTIMATION
USING NEURAL NETWORK

1Department of CSE, Veerammal engineering college, K.Singarakottai (P.O), Dindugal. 2 HOD/CSE, Vickram College of Engineering, Enathi
(P.O), Madurai. Email:samlakshia@gmail.com

Received: 12 September 2014, Revised and Accepted:15 October 2014

ABSTRACT

Last few decade software accomplishment admiration models developed, authentic estimates of the software activity beneath development is still
unachievable goal. Recently advisers are alive on the development of new models and the advance of the absolute ones application bogus
intelligence techniques. Designing of ANN (Artificial Neural Network) to archetypal a circuitous set of accord amid the abased capricious (effort)
and the absolute variables (cost drivers) makes an apparatus for estimation. This cardboard presents an achievement assay of Multi ANNs in
accomplishment estimation. We accept apish Back propagation ANN created by MATLAB Neural Network Apparatus application NASA dataset.

Keywords: Effort, Drivers, Back propogation, Matlab, NASA dataset.

INTRODUCTION

Software bulk and accomplishment admiration is one of the lots of
arduous issues in software activity management. Several estimates
are complex to finer administer the software cost. It has become cold
of every software engineering association to advance advantageous
models that can accurately appraisal the software effort.

One of the a lot of broadly acclimated address is COCOMO
(constructive bulk model) alien by Barry Boehm in 1981, and is still
in use by software engineering community. Software development
efforts admiration is the action of admiration the lot of astute use of
accomplishment appropriate to advance or advance software based
on incomplete, ambiguous and/or blatant input. Accomplishment
estimates may be acclimated as ascribe to activity plans, abundance
plans, budgets, investment analyses, appraisement processes and
behest rounds. A lot of the assay has focused on the architecture of
academic software cost models.

The aboriginal models were about based on corruption assay or
mathematically acquired from theories from added domains.
COCOMO consists of a bureaucracy of three more abundant and
authentic forms. The aboriginal level, Basic COCOMO is acceptable
for quick, early, asperous adjustment of consequence estimates of
software costs, but its accurateness is bound due to its abridgement
of factors to annual for aberration in activity attributes (Cost
Drivers). Average COCOMO takes these Bulk Drivers into annual and
Abundant COCOMO additionally accounts for the access of alone
activity phases.

Basic COCOMO computes software development accomplishment
(and cost) as an action of affairs size. Affairs admeasurements is
bidding in estimated bags of antecedent curve of cipher (SLOC),
COCOMO applies to three classes of software projects:
 Amoebic projects - "small" teams with "good" acquaintance

alive with "less than rigid" requirements.
 Semi-detached projects - "medium" teams with alloyed

acquaintance alive with a mix of adamant and beneath than
adamant requirements.

 Embedded projects - developed aural a set of "tight"
constraints. It is as well aggregate of amoebic and semi-
detached projects (Hardware, software, operational).

The basic COCOMO equations are:

Effort Activated (E) = ab (KLOC) bb [man-months]
Development Time (D) = cd (Effort Applied) de[months]
People appropriate (P) = Accomplishment Activated / Development
Time, Where, KLOC is the estimated bulk of delivered curve
(expressed in thousands) of cipher for project.

Intermediate COCOMO computes software development
accomplishment as action of affairs admeasurements and a set of
"cost drivers" that cover abstract appraisal of product, hardware,
cadre and activity attributes. This addendum considers a set of four
"cost drivers”, anniversary with a bulk of accessory attributes:-

Product attributes
 Required software reliability
 Size of application database
 Complexity of the product

Hardware attributes
 Run-time performance constraints
 Memory constraints
 c.Volatility of the virtual machine environment
 Required turnabout time

Personnel attributes
 Analyst capability
 Software engineering capability
 Applications experience
 Virtual machine experience
 Programming language experience

 Project attributes
 Use of software tools
 b.Application of software engineering methods
 Required development schedule
The Intermediate Cocomo formula is: E=ai (KLoC) (bi).EAF

Where E is the effort applied in person-months, KLoC is the
estimated number of thousands of delivered lines of code for the
project, and EAF is the factor calculated above. Detailed COCOMO
incorporates all characteristics of the average adaptation with an
appraisal of the bulk driver's appulse on anniversary footfall
(analysis, design, etc.) of the software engineering process. The

Vol 2, Issue 4 , 2014 ISSN: 2347-1573

S.P.SAM DHANA SEKAR, A.ASKARUNISA

Sekar et al.

Innovare Journal of Engineering and Technology, Vol 2, Issue 4, 2014, 5-9

6

abundant archetypal uses altered accomplishment multipliers for
anniversary bulk disciplinarian attribute. These Appearance
Sensitive accomplishment multipliers are anniversary to actuate the
bulk of accomplishment appropriate to complete anniversary phase.

In abundant COCOMO, the accomplishment is affected as action of
affairs admeasurements and a set of bulk drivers accustomed
according to anniversary appearance of software activity cycle.

An Abundant activity agenda is never static. The 5 phases of
abundant COCOMO are:-

 Plan and requirement.
 System Design.
 Detailed Design.
 Module code and test.
 Integration and test.

In order to make accurate estimates cost estimation techniques are
divided into two main categories
Parametric Models or Algorithmic Models that are derived from
numerical analysis of historical projects data
Non Parametric or Non Algorithmic Models based on set of artificial
intelligence techniques like neural networks, genetic Algorithm, rule
based induction, etc.
This paper discusses Neural Network non parametric cost
estimation technique.

LITERATURE REVIEW

ANN in Effort Estimation

Artificial Neural Arrangement is acclimated in accomplishment
admiration due to its adeptness to apprentice from antecedent data.
It is as well able to archetypal circuitous relationships amid the
abased (effort) and absolute variables (cost drivers). In addition, it
has the adeptness to generalize from the training abstracts set
appropriately enabling it to aftermath adequate aftereffect for ahead
concealed data. Most of the plan in the appliance of neural
arrangement to accomplishment admiration fabricated use of Back-
propagation algorithm.

Artificial Neural Network (ANN) is a massively alongside adaptive
arrangement of simple nonlinear accretion elements alleged
Neurons, which are advised to abstruse and archetypal some of the
functionality of the animal afraid arrangement in an attack to
partially abduction some of its computational strengths.

An artificial neural network comprises of eight basic components:
(i) neurons, (ii) activation function, (iii)signal function, (iv)pattern of
connectivity, (v)activity aggregation rule, (vi) activation rule, (vii)
learning rule and (viii)environment.

After an ANN is created it accepts to go through the action of
learning or training. The action of modifying the weights in the
access amid arrangement layers with the cold of accomplishing the
accepted achievement is alleged training a network. There are two
approaches for training supervised and unsupervised. In supervised
training; both the inputs and the outputs are provided.

The network afresh processes the inputs, compares its consistent
outputs adjoin the adapted outputs and absurdity is calculated. In
unsupervised training, the network is provided with inputs but not
with adapted outputs. The network itself accept to afresh adjudge
what appearance it will use to accumulation the ascribe data.

Most of the plan in the appliance of neural network to
accomplishment admiration fabricated use of Back-propagation
algorithm and Back propagation. Abounding altered models of
neural nets accept been proposed for analytic abounding circuitous
absolute activity problems.

The 7 steps for effort estimation using ANN can be summarized as
follows:

 Abstracts Collection: Collect abstracts for ahead developed
projects like LOC, adjustment used, and added characteristics.

 Division of dataset: Divide the amount of abstracts into two
locations training set & validation set.

 ANN Design: Design the neural arrangement with amount of
neurons in input layers aforementioned as the amount of
characteristics of the project.

 Training: Feed the training set aboriginal to alternation the
neural network.

 Validation: After training is over afresh validate the ANN with
the validation set data.

 Testing: Finally analysis the created ANN by agriculture
analysis dataset.

 Absurdity calculation: Check the achievement of the ANN. If
satisfactory afresh stop, abroad afresh go to step (3)
accomplish some changes to the arrangement ambit and
proceed.

RESEARCH METHOD

Back-Propagation Learning rule: Back-Propagation Learning
(BPL) algorithm was invented in 1969 for learning in multilayer
network. The back-propagation algorithm trains a accustomed
augment advanced multilayer neural arrangement for a accustomed
set of ascribe patterns with accepted classifications. If anniversary
access of the sample set is presented to the network, the
arrangement examines its achievement acknowledgment to the
sample ascribe pattern. The achievement acknowledgment is again
compared to the accepted and adapted achievement and the
absurdity amount is calculated. Based on the error, the affiliation
weights are adjusted. The back propagation algorithm is based on
Widrow-Hoff delta learning rule in which the weight acclimation is
done through mean square error of the achievement
acknowledgment to the sample input. The set of these sample
patterns are again presented to the arrangement until the absurdity
amount is minimized. The back-propagation neural network has
input layer, hidden band and one achievement (output) layer.
Ascribe signals transmitted from ascribe (input) to hidden and
hidden to achievement band and absurdity arresting from
achievement to hidden and hidden to input.

Back-propagation Learning algorithm uses training abstracts to
acclimatize the weights and beginning of neurons so as to abbreviate
the error. It is based on the differences amid the absolute and the
adapted output. It works by applying the acclivity coast aphorism to
feed-forward network. The algorithm involves two phases, the
advanced appearance that occurs if the inputs (external stimuli) are
presented to the neurons of the ascribe band and are broadcast
advanced to compute the achievement and the astern phase, if the
algorithm performs modifications in the backward direction.
Steps of the algorithms are the following:

Step 1: Initialize weights with small, accidental values
Step 2: While endlessly action is not true

For each training pair (input/output):
1. Each input unit broadcasts its value to all hidden units.
2. Each hidden unit sums its input signals & applies activation

function to compute its output signal.
3. Each hidden unit sends its signal to the output units.
4. Each output unit sums its input signals & applies its activation

function to compute its output signal.

Step 3: Each output computes its error term; its own weight
correction term and it bias (Threshold) correction term &
sends it to layer below
Step 4: Each hidden unit sums its delta inputs from above &
multiplies by the derivative of its activation function; it also
computes its own weight correction term and its bias
correction term
Step 5: Each output unit updates its weights and bias
Step 6: Each hidden unit updates its weights and bias:

a. Each training cycle is called an epoch. The weights
are updated in each cycle.

Sekar et al.

Innovare Journal of Engineering and Technology, Vol 2, Issue 4, 2014, 5-9

7

b. It is not analytically possible to determine where the
global minimum is. Eventually the algorithm stops in
a low point, which may just be a local minimum.

This archetypal uses the advantages of artificial neural networks
such as acquirements adeptness and acceptable interpretability,
while advancement the claim of the COCOMO II model. The aim of
this abstraction is to enhance the admiration accurateness of
COCOMO model, so that the estimated accomplishment is added
abutting to absolute effort.

The proposed anatomy of neural arrangement is customized to
board the COCOMO II post architectural model. There are 5
calibration factors denoted by SF and 17 accomplishment
multipliers denoted by EM. The use of neural all the inputs of
Calibration factors and accomplishment multipliers are provided
through the neurons of ascribe band as apparent in amount 2 with
bias. The net ascribe of calibration factors and accomplishment
multipliers are affected at anniversary bulge of hidden layer.
Initialization: The weights associated with accomplishment
multipliers are initialized as wi = 1 for I = 1 to 17, learning rate
α=0.001 and bias1 =log (A). The inputs are accustomed and
accumulate to the weights and provided to the network. The weights
associated with scale factors vj = 0 for j = 1 to 5 and bias 2 is 1.01.

Figure 3.1 Architecture of Neural Network.

Abbreviations used:
 PM : Person per month
 SIZE : Line of Code in KLOC
 SF : Scale factors
 EM : Effort Multipliers
 Q0 : Initial weight associated with scale factors
 P0 : Initial weight associated with scale factors
Step 1: Calculate PM according to COCOMO II model of Berry Boehm

Step 2: Calculate output of hidden layer neuron as:
Net input to hidden layer node 1 (for scale factors (wi i is the
weights)) = N1

F (net) = F (N1) i.e. output of hidden layer node 1 (for scale factors)

F (N1) = 1/ 1 + exp (-N1) = S
Net input to hidden layer node 2 (for effort multiplier (vj are the
weights)) = N2

F (net) i.e. output of hidden layer node 2 (for effort multiplier) = F
(N2)

F (N2) = 1/ 1 + exp (-N2) = T
Step 3: Calculate Net input to output layer node as:

PMa = SP + TQ Where P and Q are weights from hidden layer
nodes to output layer node. P =1 and, Q=1

Step 4: Check if (PMa>=PMd) then output =1 and exit
Else output =0 and go to step 5

Step 5: weights are updated as.
Wt (new) = wt (old) + (desired o/p – actual o/p) * input.

Data Collection:

Results in neural networks will be affected by demography
actual abstracts of 50 projects which are disconnected into three
parts: 20 projects abstracts for training the network, 10 projects for
acceptance the arrangement and 10 projects for testing the network.

TABLE 3.1 DATA USED FOR TRAINING THE NEURAL NETWORK

Project No Size Effort
1 4.20 9.00
2 5.00 8.40
3 7.80 7.30
4 9.700 15.60
5 12.50 23.90
6 12.80 18.90
7 20 73.0
8 24 49.3
9 28 65.8

10 29 40.1
11 30 32.2
12 31.10 39.60
13 35 52.6
14 39 72.0
15 40 27.0
16 41 95.5
17 46.60 96.00
18 46.50 79.00
19 52 58.6
20 57 71.1

TABLE 3.2 DATA USED FOR VALIDATING THE NEURAL NETWORK

Project No Size Effort
31 2.10 5.00
32 3.10 7.00
33 21.50 28.50
34 22 19.1
35 54 138.8
36 54.50 90.80
37 62 189.5
38 67.50 98.40
39 318 692.1
40 450 1107.3

TABLE 3.3 DATA USED FOR TESTING THE NEURAL NETWORK

Project No Size Effort

41 10.50 10.30
42 42 78.9
43 44 23.2
44 48 84.9
45 50 84.0
46 78.60 98.7
47 130 673.7
48 165 246.9
49 200 130.3
50 214 86.9

Experimental parameters

Parameters used for performing the operation in neural
networks are as follows

TABLE 3.4 OPERATION TABLE

Sekar et al.

Innovare Journal of Engineering and Technology, Vol 2, Issue 4, 2014, 5-9

8

Parameters Back propagation Learning Algorithm

Network Type Feed-forward back propagation
Training function TRAINLM
Performance Function MSE
Number of neurons 3
Transfer function PURELIN
No. of epochs 50

Experiment and Result

Evaluations of Results

In this section we will assay the after-effects of neural network
algorithms i.e. Back-propagation learning Algorithms and COCOMO
Model of software engineering. Matlab 7.0 software belvedere is use
to accomplish the experiment. Comparison of these amount
anticipation techniques will be done on the base of after-effects
evaluated and again ethics of RMSE and MMRE will be affected and
compared.

Comparison of Different Cost Prediction Techniques

In this area accomplishment application COCOMO Model and Neural
network learning algorithms will be compared. Ethics are
accustomed in the afterward table:

Table 4.1 Comparison between COCOMO Model and back-

propagation learning algorithm

Project
No

Size
(KLOC)

Actual
Effort

COCOMO
Model

Back -
Propagation

41 10.5 10.3 28.3 18.5
42 42 78.9 121.5 67.83
43 44 23.2 127.6 70.89
44 48 84.9 139.8 74.95
45 50 84 145.9 76.01
46 78.6 98.7 234.6 72.301
47 130 673.7 398 170.72
48 165 246.9 511.2 317.97
49 200 130.3 625.6 410.79
50 214 86.9 671.6 396

RESULT

Estimation is one of the acute tasks in software activity
management. To aftermath a bigger estimate, we accept to advance
our compassionate of these activity attributes and their causal
relationships, archetypal the appulse of evolving environment, and
advance able means of barometer software complexity. Here three a
lot of accepted approaches were appropriate to adumbrate the
software accomplishment estimation.

In one duke COCOMO which has been already authentic and
auspiciously activated in the software accomplishment admiration
acreage and in added duke the Back-propagation acquirements
(learning) algorithm in Neural Arrangement that has been
abundantly acclimated in lieu of COCOMO admiration and accept
approved their backbone in admiration problem. To get authentic
after-effects the neural arrangement depends alone on adjustments
of weights from hidden layer of arrangement to output layer of
neural network. We accept acclimated the 50 projects abstracts set
to validate alternation and simulate the network. This simulation
with dataset has been agitated out application Matlab NN apparatus
box. All for ANN are accomplished application algorithm.

After testing the arrangement it is assured that acquirements
algorithms of neural network accomplish bigger again the COCOMO
model. It has beneath absurdity values, so accurateness is top in
Back propagation. The after-effects from our simulation show that
Back propagation feed- forward neural arrangement accord the best
performance, a part of all.

FUTURE WORK

Future plan on these capacity should cover application an
accomplishment admiration abstracts set for which the bulk of
abstracts accessible is not a constraint. A neural arrangement
accomplished on this abstracts set would accommodate an added
reliable appraisal of neural networks adeptness to aftermath a
superior accomplishment estimate. In adjustment to accretion added
acumen to the tremendous box attributes of the neural arrangement
amount estimate, accommodation copse could be examined.

The accommodation copse could appearance the point at which an
attributes amount changes the software’s cost, and that attributes
accept the better appulse on the Software’s cost.

The abstracts conception adjustment could as well be advised in
adjustment to advance its usefulness. The adjustment as currently
constituted provides added babble in the actualize abstracts than is
desired. By introducing added constraints and Precedent
relationships in the abstracts conception process, the bulk of babble
present would be reduced. This would allow the abstracts
conception action to be acclimated on networks that accomplished
an acceptable after effect amount if application their abject abstracts
set.

REFERENCES

1. [1] Boehm, B.W., (1981) Software Engineering Economics,
Prentice Hall, Englewood Cliffs, NJ.

2. [2] Idri A, Zakrani A, Zahi A, (2010), Design of radial basis
function neural networks for software effort estimation, IJCSI
International Journal of Computer Science 7(4), 11-17.

3. [3] A.B.Nassif, L.F.Capretz and D.Ho, "Software estimation in
the early stages of the software life cycle," in International
Conference on Emerging Trends in Computer Science,
Communication and Information Technology, 2010.

4. [4] B. W. Boehm, Software Engineering Economics. Prentice-
Hall, 1981.

5. [5] A. B. Nassif, D. Ho and L. F. Capretz. "Towards an early
software estimation using log-linear regression and a
multilayer perceptron model," Journal of Systems and
Software, 2012.

6. [6] R. P. Lippman, "An Introduction to Computing with Neural
Nets," IEEE ASSP Magazine, vol. 3, no.2, pp. 4-22, 1987.

7. [7] A. Heiat, "Comparison of artificial neural network and
regression models for estimating software development effort,"
Information and Software Technology, vol. 44, pp. 911-922,
2002.

8. [8] Y. Kultur, B. Turhan and A. Bener, "Ensemble of neural
networks with associative memory (ENNA) for estimating
software development costs," Knowledge-Based Systems, vol.
22, 2009, pp. 395-402.

9. [9] N. Karunanitthi, D. Whitley, and Y. K. Malaiya, "Using
Neural Networks in Reliability Prediction,” IEEE Software, Vol.
9, no.4, 1992, pp. 53-59.

10. [10] Prasad Reddy P.V.G.D, Sudha K.R, Rama Sree P and
Ramesh S.N.S.V.S.C, (2010), “Software Effort Estimation using
Radial Basis and Generalized Regression Neural Networks,”
Journal of Computing, Volume 2, Issue 5, pp 87-92.

11. [11] Parvinder S. Sandhu, Porush Bassi, and Amanpreet Singh
Brar, “Software Effort Estimation Using Soft Computing
Techniques,” 2008, PP: 488-491.

12. [12] Iman Attarzadeh and Siew Hock Ow, “Soft Computing
Approach for Software Cost Estimation,” International Journal
of Software Engineering, IJSE Vol.3 No.1, January 2010, PP: 1-
10.

13. [13] Anish M, Kamal P and Harish M, “Software Cost Estimation
using Fuzzy logic,” ACM SIGSOFT Software Engineering
Notes,Vol.35 No.1, ,November 2010, pp.1-7

14. [14] Iman A and Siew H.O, “Soft Computing Approach for
Software Cost Estimation,” International Journal of Software
Engineering, IJSE Vol.3 No.1, January 2010, pp.1-10.

15. [15] K. V. Kumar, et al., “Software development cost estimation
using wavelet neural networks,” Journal of Systems and
Software, vol. 81, pp.1853-1867, 2008.

Sekar et al.

Innovare Journal of Engineering and Technology, Vol 2, Issue 4, 2014, 5-9

9

16. [16] I. K. Balich and C. L. Martin, “Applying a feed forward
neural network for predicting software development effort of
short-scale projects,” in Software Engineering Research,
Management and Applications (SERA), , pp. 269-275, 2010.

17. [17] V. Khatibi. B, et al., “Neural networks for accurate
estimation of software metrics,” International Journal of
Advancement in Computing Technology, vol. 3, 2011, pp. 54-66.

18. [18] Kiyoshi Kawaguchi,” Back propagation Learning
Algorithm”, Wikipedia . org, June 2000.

