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ABSTRACT 

A clinically verified patient-specific glucose-insulin metabolic model known as ICING is used to account for time-varying insulin sensitivity. ICING 
was developed and validated from critically-ill patients with various medical conditions in the intensive care unit in Christchurch Hospital, New 
Zealand. Hence, it is interesting and vital to analyse the compatibility of the model once fitted to Malaysian critically-ill data. Results were assessed 
in terms of percentage of model-fit error, both by cohort and per-patient analysis. The ICING model accomplished median fitting error of<1% over 
data from 63 patients. Most importantly, the median per-patients is at a low fitting error of 0.34% and per cohort is 0.35%. These results provide a 
promising avenue for near future simulations of developing tight glycaemic control protocol in the Malaysian intensive care unit. 
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INTRODUCTION 

Critical care units are seeing rapidly growing numbers of patients with 
hyperglycaemia (high blood glucose) which is similar to diabetes due 
to endemic insulin resistance as well as the stress of their condition. 
The metabolic response to stress is characterised by major changes in 
glucose metabolism. Increased secretion of counter-regulatory 
hormones leads to a prominent rise in endogenously produced glucose 
and the rate of hepatic gluconeogenesis, as well as a reduction in 
insulin sensitivity. An essential treatment of hyperglycaemia in all 
cases is to maintain active insulin control by monitoring glucose levels 
and supplying insulin as necessary. In the critical care setting it is even 
more critical as active control has been shown to reduce mortality by 
up to 45% [1]. Inhibiting the physiological response to increased 
glycaemic levels are factors such as increased insulin resistance, 
absolute or relative insulin deficiency, and drug therapy. Hence, it is 
vital that normoglycaemia within the intensive care unit (ICU) is 
maintained.  

Hyperglycaemia is not only a marker for severity of illness, it also 
worsen outcomes, leading to an increased risk of further 
complications, such as severe infections, myocardial infarctions, 
polyneuropathy and multiple-organ failure [2]. Done effectively, active 
insulin control in the ICU reduces organ failure, save lives and reduces 
cost. However, effective insulin control has proven difficult, 
particularly within increasingly tight nursing resources as many unit 
employ less than one nurse per patient. A model-based approach 
offers the opportunity to improve productivity and enhance the 
consistency and quality of insulin control to yield successful results [1] 
Of the prior successful, and many unsuccessful insulin studies studies, 
none employed computational model-based control to manage the 
patient’s glycaemic level during or after disaster occurred. Thus, there 
is significant motivation for effective maintenance of normal glucose 
levels which have shown potential to provide clinically effective 
solutions [3–5]. 

In the ICU, catastrophic disasters may force difficult decisions for 
intensivist and nurses when demand for round-the-clock care greatly 
exceeds available resources. Most critical care units routinely function 
at or near capacity, significantly decreasing available critical care 
response capabilities for disasters. Current hospitals recognize that 
excess critical care capacity for a disaster is extremely limited. 
Critically ill patients often experience physiological stress responses 
which lead to a highly complex and dynamic metabolic state, making 

effective treatment of hyper-and hypo-glycaemia difficult. Glycaemic 
variability, and thus poor control, is also independently associated 
with an increase in mortality. The critical care response to disaster 
will be challenged and patients care might shift from individually 
focused to whole group. 

This study targets to design a model-based approach towards safe 
management of hyperglycaemia for Malaysian critically-ill patients. 
However, the focus of this paper is to assess the compatibility of a 
clinically verified glucose-insulin model with Malaysian critically-ill 
data. In the first part of this paper, an analysis of the efficacy of current 
protocol practice is presented. Development of time-varying profiles 
follows suit as these are used as the critical marker of a patient's 
metabolic state. The insulin sensitivity metric is independent of both 
the insulin and nutrition inputs used to derive it. Identifying insulin 
sensitivity requires capturing the fundamental dynamics of the 
glucose regulatory system. A clinically verified patient-specific 
glucose-insulin metabolic model known as ICING [6] is used to account 
for time-varying insulin sensitivity. ICING [6] was developed and 
validated from critically-ill patients with various medical conditions in 
the intensive care unit in Christchurch Hospital, New Zealand. Hence, 
it is interesting and vital to analyze the compatibility of the model 
once fitted to Malaysian critically-ill data. Results were assessed in 
terms of percentage of model-fit error, both by cohort and per-patient 
analysis. The ICING model [6] accomplished median fitting error 
of<1% over data from 63 patients. Most importantly, the median per-
patients is at a low fitting error of 0.34% and by cohort is 0.35%. 
These results provide a promising avenue for near future simulations 
of developing TGC protocol in the Malaysian intensive care unit. 

MATERIALS AND METHODS 

Methodology 

Data of 63 critically-ill patients were gathered from the intensive care 
unit of Hospital Tengku Ampuan Afzan Kuantan (HTAA), Pahang. The 
socio-demographic characteristics and cohort details are summarized 
in table 1. Malay ethnicity makes the largest cohort at 87% and 
percentage of male patients is 59%. 67% of patients are under medical 
category and 67% of patients fall under age cohort of over 50 y old. 
The Intensive Insulin Protocol used in HTAA to maintain the blood 
glucose (BG) concentration target was set at 5.1-8.0 mmol/l. Ethics 
was granted by IIUM Research Ethics Committee and National 
Institute of Health (NIH). 
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Table 1: Socio-demographic characteristics 

Socio-demographic characteristics Total  N = 63 
Gender 
Female 26 
Male 37 
Mortality 
Dead 
Alive 

24 
38 

Referring Unit Category 
Neuro 1 
Surgical 20 
Medical 42 
Age groups (years) 
<29 4 
30-39 6 
40-49 11 
>50 42 
Ethnicity 
Indian 1 
Others 3 
Chinese 4 
Malays 55 

System model 

The glucose-insulin physiological model used in this study is 
clinically-validated [6]. Known as ICING model, it uses previous 
and current BG values, previous nutrition and previous insulin 
doses to compute the insulin sensitivity, SI of the patient over the 
previous time period, based on parameter identification algorithm 
[7] which fits the model to the clinically observed behavior. The 
resulting time-varying SI profiles represent time-varying 
metabolic status for individual patients. Model accuracy is 
assessed by percentage of fitting error, where fitting error is the 
error between the measured and the modelled blood glucose 
levels. Testing new interventions with this profile in simulations 
provides new outputs. Thus, the profile of SI can be used to create 
“virtual patients” for testing insulin protocols. Virtual simulations 
for protocol testing will be carried out in future for controller 
model development. Analysis is done on by cohort which reads the 
statistics on the possible hourly fitting errors (weighing each hour 
equally) while per-patient is statistics on each individual patient 
(weighing each hour equally). 

Equations (1) to (6) are defined in the nomenclature of table 2.
  

Table 2: ICING equations description 

Symbols Descriptions Symbols Descriptions 
G(mmol/l) Total plasma glucose VG Glucose distribution volume (L) 
GE Blood glucose at equilibrium level (mmol/l) P(t)(mmol/min) External nutrition 
I(mU/l) Plasma insulin α I Saturation plasma insulin disappearance (L/mU) 
Uex(t)(mU/min) Exogenous insulin input αG Saturation of insulin-simulated glucose removal (L/mU) 
Q(mU/l) Interstitial insulin d1d2(min-1 Transport rate ) 
k(min-1 Effective life of insulin in system ) P2(mmol/min) Represent gut 
PG(min-1 Patient endogenous glucose removal ) D(t)(mmol/min) Dextrose amount from enteral feeding 
SI(L/mU. min) Interstitial insulin CNS(mmol/min) Uptake central nervous system 
VI(L) Insulin distribution value nI Diffusion constant insulin between compartment (min-1) 
P1(mmol/min) Represent stomach nK Kidney clearance rate of insulin from plasma (min-1) 
PN(t) Parenteral dextrose nL Liver clearance rate of insulin from plasma (min-1) 
EGP(mmol/min) Production endogenous glucose nC Cellular insulin clearance rate from interstitium (min-1) 
 

Total plasma glucose 
G(t)=-pG G(t)-SI(G(t)) Q(t)

1+αGQ(t) 
+ P(t)+EGPb–CNS 

VG
 ………… (1) 

Interstitial insulin  
𝑄𝑄(𝑡𝑡) =  𝑛𝑛𝑛𝑛�𝑛𝑛(𝑡𝑡) −  𝑄𝑄(𝑡𝑡)� −  𝑛𝑛𝑛𝑛 𝑄𝑄(𝑡𝑡)

1+𝛼𝛼𝛼𝛼𝑄𝑄(𝑡𝑡)
 …………………. (2) 

Plasma insulin   
I(t)=-nKI(t)-nL I(t)

1+αII(t)
-nI(Q(t)+I(t))+ uex(t)

VI
+(1-xL) uen(G)

VI
 ……. (3) 

Dextrose  
𝑃𝑃1 =  −𝑑𝑑1𝑃𝑃1 + 𝐷𝐷(𝑡𝑡) …………………………………………… (4) 

 

𝑃𝑃2 =  −min(𝑑𝑑2𝑃𝑃2,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) + 𝑑𝑑1𝑃𝑃1 ……………………. (5) 
  

𝑃𝑃(𝑡𝑡)  =  𝑃𝑃𝑚𝑚𝑛𝑛(𝑑𝑑2𝑃𝑃2,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) + 𝑃𝑃𝑃𝑃(𝑡𝑡)……………………. (6) 

RESULTS AND DISCUSSION 

Fig. 1 shows the cumulative distribution frequency (CDF) of BG 
measurement levels for 63 patients undergoing intensive insulin therapy 
in HTAA, as per cohort (fig. 1a) and per-patient (fig. 1b). The median of BG 
measurement levels by cohort is at 8.0 mmol/l with an interquartile range 
of [6.4, 10.1] mmol/l. Fig. 2 shows a random sample of patient profile. The 
first panel depicts the BG measurement level while the 2nd panel shows the 
insulin infusion received by the patient. The 3rd

From fig. 1, it can be concluded that 50% of critically-ill patients in the 
ICU still have unsatisfactory control quality in their BG measurement 
levels. Half of the patients recorded BG levels above 8 mmol/l even the 

target was set at 5.1-8.0 mmol/l. This drives the motivation to 
implement a model-based control in a Malaysian ICU setting. Model-
based control provides a more systematic approach in the 
management of hyper glycaemia, more so in a high-occupancy rate 
ICU. Rather than using the concept of ‘treat’ to meet target, model-
based approach ‘prevents’ to safely manage BG within desired level.  

Patients in the critical settings have more variable, dynamic and 
unpredictable BG. By using model-based, patient’s hourly metabolic 
indicator can be calculated in real-time. Hence, any interventions, for 
example the amount of insulin or nutrition to be given would be based 
upon this SI indicator. Therefore, all treatments will be tailored to each 
patient unlike a one-size fits all method. Sliding-scale insulin protocol 
as normally seen in a lot of hospital settings uses a standardized care 
across patients. More often than not, insulin is the only means of 
control. ICING [6] on the other hand, uses both insulin and nutrition to 
predict the required BG for the next hour and up to 4hr. Based upon 
the low percentage of model-fit error, it is promising that ICING [6] 
model is suitable and relevant to be used for Malaysian critically-ill 
patients. However, this is a proof of concept and a pilot trial is still 
needed to validate clinically. This study can be expanded to many 
other areas. For example, control in high occupancy rate where 
intervention frequency would be further apart.  
 

 and last panel represents 
the nutrition received and the hourly SI profiles of the patient. SI profiles 
here are the only metabolic indicator of the patient, an output from ICING 
model. From this study, 63 SI profiles have been generated. These profiles 
represent virtual patients which is important for the model-based 
controller development, an on-going research but not the focus of this 
paper. In fig. 3, CDF of model fit error for the overall patients fitted to the 
ICING [6] model is shown. The model achieved a low error at 0.34% per-
patient and 0.35% by cohort. 

 

Fig. 1a: Per-cohort 
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Fig. 1b: Per-patient 

Fig. 1: CDF for BG measurement levels (mmol/l) of by cohort and 
per-patient 

 

 
Fig. 2: A random patient profiles receiving intensive insulin therapy 

in a Malaysian ICU setting. Top panel represents the BG 
measurement level (mmol/l) of the patient, 2nd panel shows the 
insulin infusion received (mU/l) during ICU stay, 3rd

 

 panel is the 
nutrition received (mmol/min) and the last panel is the SI profiles 

generated from the ICING model 
 

Fig. 3: Top panel shows the per-patient CDF of percentage model 
fit error (%) of bottom panel gives the by cohort model fit error 

CONCLUSION 

The intensive glucose-nutrition insulin model, ICING validated in this 
study with clinical data from a Malaysian ICU setting shows a 
promising result for model-based control development.  
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