Leucaena trees are commonly known as White Lead tree. It is native to Southern Mexico and Northern Central America and spread across many tropical and sub-tropical locations. It has multipurpose uses, such as generation of firewood, timber, greens, fodder, and green manure, as well as to provide shade and control soil erosion. It has been used for medicinal purposes because of possessing multiple pharmacological properties. Studies have shown the presence of various secondary metabolites such as alkaloids, cardiac glycosides, tannins, flavonoids, saponins, and glycosides in this species. In traditional medicine, it is used to control stomach ache and as contraception and abortifacient. In the present study, the global distribution, taxonomy, chemical composition, pharmacological activities, and potential uses of Leucaena leucocephala are discussed.

Keywords: Leucaena leucocephala, Medicinally, Multipurpose, Pharmacological activities, Traditional medicine

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
DOI: http://dx.doi.org/10.22159/ijpps.2018v10i1.18250

ABSTRACT

Leucaena leucocephala trees are commonly known as White Lead tree. It is native to Southern Mexico and Northern Central America and spread across many tropical and sub-tropical locations. It has multipurpose uses, such as generation of firewood, timber, greens, fodder, and green manure, as well as to provide shade and control soil erosion. It has been used for medicinal purposes because of possessing multiple pharmacological properties. Studies have shown the presence of various secondary metabolites such as alkaloids, cardiac glycosides, tannins, flavonoids, saponins, and glycosides in this species. In traditional medicine, it is used to control stomach ache and as contraception and abortifacient. In the present study, the global distribution, taxonomy, chemical composition, pharmacological activities, and potential uses of Leucaena leucocephala are discussed.

INTRODUCTION

Leucaena leucocephala (Family: Fabaceae) is a small, fast-growing tree, and has multiple common names by which it is known such as White Lead tree, White Popinac, Jumbay, and Wild Tamarind [1]. It is native to Southern Mexico and Northern Central America and diffused in over 35 countries across all continents, except Antarctica (table 1) [2].

Table 1: The global distribution of Leucaena leucocephala [2]

<table>
<thead>
<tr>
<th>Region</th>
<th>Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>Angola, Burundi, Cape Verde Is, Cameroon, Chad, Djibouti, Egypt, Equatorial Guinea, Ethiopia, Ghana, Guinea, Guinea Bissau, Ivory Coast, Kenya, Liberia, Malawi, Mali, Mozambique, Niger, Nigeria, Sao Tome and Principe, Senegal, Sierra Leone, Somalia, South Africa, Sudan, Tanzania, Togo, Uganda, Zaire and Zimbabwe</td>
</tr>
<tr>
<td>Asia</td>
<td>Bhutan, Cambodia, India, Indonesia, Iraq, Iran, Laos, Malaysia, Pakistan, Philippines, Sri Lanka, Taiwan, Thailand, Vietnam and Japan</td>
</tr>
<tr>
<td>Australasia</td>
<td>Australia, Papua New Guinea (New Guinea, New Britain and Bismarck Archipelago)</td>
</tr>
<tr>
<td>Caribbean</td>
<td>Bahamas, Bermuda, Caymans, Cuba, Dominican Republic, Grenada, Haiti, Jamaica, Puerto Rico</td>
</tr>
<tr>
<td>Central America</td>
<td>Costa Rica, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, and Panama</td>
</tr>
<tr>
<td>Europe</td>
<td>Spain</td>
</tr>
<tr>
<td>Indian Ocean</td>
<td>Aldabra, Chagos, Archipelago, Madagascar, Mauritius, Reunion Is. (Rugolites Is., Seychelles, and Christmas Island.</td>
</tr>
<tr>
<td>Middle East</td>
<td>Saudi Arabia and Yemen</td>
</tr>
<tr>
<td>North America</td>
<td>United States in Arizona, Georgia, Virgin Islands, Texas, Florida and Hawaii</td>
</tr>
<tr>
<td>Pacific Ocean</td>
<td>Caroline outer islands (Fiji), Polynesia (Taihit, Moorea)</td>
</tr>
<tr>
<td>South America</td>
<td>Argentina, Bolivia, Brazil, Chile, Colombia, Guyana, Peru, Venezuela</td>
</tr>
</tbody>
</table>

Leucaena originated from the Greek words “leu,” which means “white,” and “caen,” which means “new,” referring to the whitish flowers. The species name also refers to the flowers: leucocephala from “leu,” meaning white, and “cephala,” meaning head. L. leucocephala was known as a miracle tree because of its worldwide success as a long-lived and highly nutritious forage tree used to produce firewood, timber, human food, green manure, shade and also to control erosion. It is estimated to cover 2-5 million ha worldwide [3-5]. Medicinally it has been used for its antimicrobial, antihistaminic, antibacterial, anti-proliferative and anti-diabetic, anticancer, cancer preventive, diuretic, anti-inflammatory, antioxidant; antitumor, antihistaminic, nematicide, pesticide, anti-androge nic, hypcholesterolemic, and hepatoprotective properties [6]. It spreads as a shrub or small tree growing up to 20 m in height throughout the cleared areas and forms dense thickets [7]. Leucaena species is an evergreen, drought-tolerant shrub or small tree, which flowers abundantly. Some species of Leucaena can grow up to 20 m in height and those are known as the Salvadorian type. Those species are considered as weeds in many parts of the world [8]. Leucaena leaves appear similar to those of tamarind, having white flowers tinged with yellow, and having long flattened pods. Seeds are dark brown with the hard shining seed coat. It has hard heavy wood (about 800 kg/m), with a pale yellow sapwood and light reddish-brown heartwood. Bark on young branches is smooth and grey-brown, and rough with shallow, rusty orange-brown vertical fissures, and deep red inner bark [9].

Taxonomical classification

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantae</td>
<td>Fabales</td>
</tr>
<tr>
<td>Tracheobionta</td>
<td>Magnoliophyta</td>
</tr>
<tr>
<td>Spermaphyta</td>
<td>Magnoliosida</td>
</tr>
<tr>
<td>Rosidae</td>
<td>Leucaena</td>
</tr>
<tr>
<td>Leucaena Benth. –lead tree</td>
<td>Leucaena leucocephala</td>
</tr>
</tbody>
</table>
The leaves of *L. leucocephala* are compound pinnate; pinnule rachis 5-10.2 cm long in general, are bipinnate with 6–8 pairs of pinnate bearing 9–20 pairs leaflets, linear-lanceolate 8–15 mm long, 2–4.5 mm wide, slightly asymmetric, acute at tip, linear-oblong to weakly elliptic, glabrous except on margins rounded to obtuse at base. *L. leucocephala* leaves fold up due to heat, cold or lack of water [10]. The paired inflorescences of axillary globose head measures between 12 and 20 mm in diameter, with the peduncle length measuring between 2 and 3 cm, and numerous flowers produced. The axillaries are on long stalks, white in color, in dense global heads measuring 1–2 cm across; fruit pod with raised border, flat, thin; becoming dark brown and hard when mature, 10–15 cm long, 1.6–2.5 cm wide, dehiscent at both sutures and each legume contains 15–20 hard, shiny, brown seeds that are flat and tear-drop shaped. This species is a polyploid with 2n = 104 chromosomes [11-15].

Flowering phenology of *L. leucocephala* varies widely among varieties and with respect to their growing location. However, it can flower all year-round [16]. *L. leucocephala* starts flowering within 4 to 6 mo of seed germination. Usually, the flowering period is seasonal or twice a year. The spherical whitish flower heads are 2to 2.5 cm in diameter, 100 to 180 flowers for each head, 2 to 6 in leaf axils per group, arising on actively growing young shoots. The color of flowers can be white or pale cream-white and are borne on stalks 2 to 3 cm long at the ends or sides of twigs [8, 16].

Pods measure from 11 cm to 19 cm long, 15 mm to 21 mm wide, 5 to 20 for each flower head, linear-oblong shape, rounded at apex, flat, 8 to 18 seeded, mid-to orange-brown, glabrous and slightly lustrous in white velvety hairs, papery, opening along both margins. The seeds are hard, dark brown with a hard shining testa measured from 6.7 mm to 9.6 mm long, 4 mm to 6.3 mm wide, aligned transversely in pod.

From the first year onward, the fruits grow in abundance. The seeds are small (8 mm long), shiny, teardrop-shaped, flat and dark brown with a thin but fairly durable seed coat. There are about 17,000 to 21,000 seeds per kilogram [17, 18]. The dispersal agents of the seeds in pastures are thin but fairly durable seed coat. There are about 17,000 to 21,000 seeds from larvae using fumigation by exposing the seeds to 32 g/m methyl bromide for 2 h at 27 °C. Although seeds can be sown directly after harvest without pre-sowing treatment, the seed germination, in that scenario becomes very low. Therefore, to increase the rate of germination, one of the pre-sowing treatments such as scarification, hot water treatment and/or sulfuric acid treatment should be used. Soaking *L. leucocephala* seeds in 100 °C water for 20 s and subsequently in water at room temperature for 48 h had the highest seed germination rate, higher cumulative germination (CGF) and shortened period of complete dormancy (CPD), when compared to the germination rate when seeds were soaked for only 24 h or untreated seeds [21].

Soaking *L. leucocephala* seeds in hot water at 80 °C for 3–4 min followed by soaking in the water at room temperature for 12 h or soaking *L. leucocephala* seeds in concentrated sulfuric acid for 15–30 min are the best pre-sowing treatments that can be used to increase the seed germination of *L. leucocephala*. However, scarification is the most effective treatment that can be used as pre-sowing inoculation of seeds as it facilitates good field establishment of nitrogen-fixing rhizobium bacteria in soil devoid of rhizobia strains [20].

Germination percentage of *L. leucocephala* seeds is 50 % to 98 % for fresh seeds [8, 19]. The complete dormancy period for scarified seeds are 6 to 10 after sowing and for unscarified seeds are 6 to 20 d after sowing [20]. The sowing of *L. leucocephala* seeds should be on or near the soil surface, but not any deeper than 2 cm. For growth in the nursery, the growing medium should be well drained, have proper nutrients and water holding capacity, and have a pH between 5.5 and 7.5 [16]. Light shade is recommended during the seedling development and full sun thereafter [16]. In young seedlings, taproot development is rapid and seedlings reach plantable size of 20 cm height in 2 to 3 mo [16, 22]. Weeding in plantations, until seedlings outgrow competing grasses or herbaceous competitors in plant biomass, is recommended [16]. Direct seeding by planting container seedlings, bare root seedlings and stem cuttings of 2 to 5 cm in diameter can be used as a method of plantation development [23]. It grows moderately rapid but not as fast as the giant variety for which most of the data are available [24].

Chemical composition and nutritive value

The chemical composition analysis of the leaves of *L. leucocephala* from Malaysia revealed the presence of 30 compounds: tetratetracontane, oxalic acid, allyl hexadecyl ester, squalene, Octacosane, hexatriacontane, 5-octadecene, 1-octadecene, 3,7,11,15-tetramethyl-2-hexadecen-1-ol, pentadecanediol, 14-methyl-, methyl ester, 9,12-octadecadienolic acid, methyl ester, hexadecanolic acid, 15-methyl-, methyl ester, 9,12,15-octadecatrienonic acid, methyl ester and 3,7,11-tridecanenitrile, 4,8,12-trimethyl, 2-dodecene, 7-hexadecene, 5-eicosene, 9,12,15-octadecatrienionic acid, methyl ester, 1-docosene, heptacosanoic acid, methyl ester, 5-hexadecene, 5-eicosene, 9,12,15-octadecatrienionic acid, methyl ester, 1-docosene, heptacosanoic acid, methyl ester, n-hexadecanoic acid, phytol and squalene [6]. The major chemical constituents of the leaves of *L. leucocephala* from Indonesia was studied by Zayed [27]. The chemical composition analysis of the leaves of *L. leucocephala* from Mexico were 2(H)-benzofuranone-5,6,7,7a-tetrahydro-4,4,7a-trimethyl, pentadecanediol acid-14-methyl-methyl ester, squalene, tetratetracontane, oxalic acid, allyl hexadecyl ester, squalene, 9,12,15-octadecatrienionic acid, methyl ester and 3,7,11-tridecanenitrile, 4,8,12-trimethyl (25.64%) [6], whereas the principal chemical constituents of the leaf extracts of the same species from China was known as a high potential fodder was 25.64% [25]. For whole plants of *L. leucocephala* from China the chemical composition was ficaprenol-11 (polyprenol), squalene, lupel-6-sitostene, trans-coumaric acid, cis-coumaric acid, pheophytin-a, pheophorbide a methyl ester, methyl-132-hydroxy-(132-S)-pheophorbide-b and arstophyll-C [26].

The animal feeding pattern of *L. leucocephala* looks alike *Medicago sativa* for fresh seeds [8, 19]. The most effective treatment that can be used as pre-sowing inoculation of seeds as it facilitates good field establishment of nitrogen-fixing rhizobium bacteria in soil devoid of rhizobia strains [20].
and pigs and processed as a pellet for freshwater fish. The dry matter digestibility (DM) of \textit{L. leucocephala} was 57.7% and crude protein based on the dry matter was 29.5% \cite{28}.

Forage quality of \textit{L. leucocephala} is higher than other \textit{Leucaena} species such as \textit{L. pallida} and \textit{L. diversifolia} as stated by Castillo et al. \cite{29}. Leaves of \textit{L. leucocephala} contained 6.70% moisture, 22.76% crude protein, 22.29% crude fibre, 4.60% fat, and 9.73% ash content \cite{30}. In another study by El-Baha \cite{31}, leaves were reported to contain the highest percentage of minerals (32.5% and 14.0%), pods the highest percentage of crude protein (33.0% and 30.9%), twigs contained the highest percentage of crude fiber (31.5% and 37%) and calcium (1.9% and 2.1%), and dry seeds possessed the highest percentage of crude fat (7.2% and 10.1%) and nitrogen free extract (55.9% and 58.8%) for the 2-4 years-old plants, respectively.

\textbf{Use of \textit{Leucaena leucocephala} as ruminant feeds}

Foraging containing 40% to 60\% \textit{L. leucocephala} leaves gave a maximum gain in weight in rabbits, goats, sheep, and cows. Rushkin \cite{32} reported that \textit{“L. leucocephala” is palatable forage, digestible and serves to increase milk output in both the humid and the monsoonal tropics for ruminants and non-ruminants. However, when \textit{L. leucocephala} is fed at levels above 7.5\% (dry mass) of the diet, non-ruminants lost weight and had general health problems due to the mimosine toxicity.” When using \textit{L. leucocephala} leaves in a rationed manner for fattening cattle, it is equivalent to cottonseed cake \cite{33} and superior to groundnut cake \cite{34}. In Queensland, Australia, a very high live weight gain was recorded using \textit{L. leucocephala} leaves \cite{32, 34-35} and the same is done as well in several other places \cite{36}. Several reports showed that \textit{L. leucocephala} could be a substitute for the imported protein supplements fed to dairy cows \cite{32}. Dairy cattle produce well when fed with \textit{L. leucocephala} \cite{32, 37}. Henke and Morita \cite{38} reported that dairy cows produce milk with higher fat content when they are fed with \textit{L. leucocephala} compared to similar cows fed on pasture and concentrates or ammoniated straw in the grass-based diet. In Australia, Hawaii and Indonesia, annual milk production of 5,000 to 9,700 L/ha was recorded \cite{32}. Feeding cows and buffaloes on \textit{L. leucocephala} foliage at 10\% of their diets produce higher milk yield by 20\% than that of the control group \cite{39}. Jones \cite{40} reported that feeding dairy cows on \textit{L. leucocephala} foliage increases milk fat and protein contents and also increases milk production by 1\% on average. Feeding dairy cows on grazing \textit{Brachiaria decumbens} with \textit{L. leucocephala} produce higher milk yield than cows fed only with grass. However, the use of \textit{L. leucocephala} for cattle feedings has problems, due to mimosine toxicity. Symptoms of mimosine toxicity include infertility, decreased weight gain, goiter, cataract in young animals, and loss of hair \cite{41}. Cattle fed completely on \textit{L. leucocephala} will not die but may lose some of their coarse hairs. However, newborn calves have shown signs of enlarged thyroids, which may result in death within a few days if their mothers have signs of toxicity \cite{42}. In addition, thyroxine levels were accounted to be higher in the group (10-month age) fed on an exclusive diet of \textit{L. leucocephala} for 23 mo \cite{43}. In sheep, \textit{L. leucocephala} provides very palatable forage. Higher performances in sheep were noted when it is fed on dried \textit{L. leucocephala} leaves at levels between 25\% and 50\% of grass hay \cite{44, 45}. In diet scarcity periods, sheep can be fed on higher amounts of dried \textit{L. leucocephala} leaves \cite{44-46}. The leaf meal or fresh leaves are comparable to rice straw in the grass-based diet of sheep because it increases DM intake, protein intake, N retention and thus improves growth performance of sheep and therefore is suitable to replace concentrates or ammoniated rice straw in the grass-based diet of sheep \cite{47, 48}. Feeding ruminant animals on \textit{L. leucocephala} foliage increased survival rate and growth rate, for instance in lambs \cite{49-51}, rams \cite{52, 53}, and ewes \cite{54}. In goats, \textit{L. leucocephala} provides very palatable, digestible, and nutritious forage. \textit{L. leucocephala} gives better dry matter intake, weight gain, and reproductive performance than other legumes such as alfalfa, \textit{Lablab purpureus}, and \textit{Glicidia sepium} \cite{54-57}. In a grass-based diet for goat, \textit{L. leucocephala} dry matter foliage can be included at 30\% to 75\% \cite{58-60}, and it does not affect the goats’ growth and milk production \cite{60}. Fresh or wilted \textit{L. leucocephala} is better than dried \textit{L. leucocephala} leaves as a dry matter intake, growth rate and nitrogen utilization \cite{61}. Angora goats fed on natural pastures with 45\% of \textit{L. leucocephala} leaf meal showed higher crude protein intake, weight gain and fibre growth \cite{62, 63}.

\textbf{\textit{Leucaena leucocephala} as non-ruminant feeds}

Ruminant animals are able to tolerate mimosine than non-ruminants and therefore, \textit{L. leucocephala} could not be a major portion of the non-ruminant diet. They could tolerate rations that contain up to 5\% to 10\% \textit{L. leucocephala} (dry weight) \cite{32}. The best rations used to growing pigs were 5\% to 10\% of \textit{L. leucocephala} leaf meals \cite{64, 65}. To improve nitrogen retention, \textit{L. leucocephala} was treated with acetic acid (30 g/kg) and up to 20\% \textit{L. leucocephala} leaves or leaf meal can then be used to feed pigs \cite{66, 67}. Using up to 40\% of \textit{L. leucocephala} leaves in camel rations reduced feed conversion efficiency \cite{67}.

In poultry, 5\%, 20\% and 30\% of \textit{L. leucocephala} leaf meal in the diet caused a decline of feed intake, weight gain and egg production \cite{68-70}. These low performances may be due to the toxicity of mimosine or poor amino acid digestibility \cite{71}. 5\% of \textit{L. leucocephala} leaf meal in rations of broilers gave higher feed conversion \cite{72}. 15\% of roasted \textit{L. leucocephala} leaves can be included in rations with no effect on the decline of animal performance \cite{73}. In laying hens, 6\% of \textit{L. leucocephala} leaf meal in rations is recommended \cite{74}. \textit{L. leucocephala} can be used to reduce feed costs, improve animal performance and yolk colour by the xanthophyll which is extracted from \textit{L. leucocephala} leaves \cite{75}.

Feeding rabbits on fresh or dried \textit{L. leucocephala} or leaf meal improve animal performance. The inclusion of 24\% to 40\% of fresh \textit{L. leucocephala} leaves is recommended for growing or fattening rabbits \cite{76-81}. \textit{L. leucocephala} can replace concentrate alfalfa (Medicago sativa) in the diet of rabbits \cite{82}. \textit{L. leucocephala} is more palatable than \textit{Arachis pintoi}. 25\% of \textit{L. leucocephala} leaf meal can be included in supplementing a diet with cassava peels and \textit{Glicirida sepium} and 30\% to 40\% with \textit{Arachis pintoi} \cite{83}. However, when more than 10\% to 15\% dried \textit{L. leucocephala} was included in the diet and replaced with wheat bran resulted in a decrease in growth in rabbits. \cite{84}. 20\% to 25\% of fresh \textit{L. leucocephala} leaves in diet resulted up to 55\% mortality of female and young rabbits \cite{85-86}.

For fish, a few studies have been used with \textit{L. leucocephala} leaf meal as a protein source in fish feeds and the data obtained are conflicting. Hossain et al. \cite{87} revealed improved growth responses of \textit{Clarias gariepinus} (African catfish) on diets containing 30\% \textit{L. leucocephala} leaf meal. However, Santt and Holy \\cite{88} obtained slow growth rate of \textit{C. macrocephalus} (Asian catfish) on diets in which 30\% of the fish meal was replaced by \textit{L. leucocephala} leaf meal.

\textbf{\textit{Leucaena leucocephala} as human food}

Almost every part of the \textit{L. leucocephala} species is consumed as human food since the era of the Mayans \cite{6}. In Indonesia, Thailand, and Central America, people eat the young leaves, flowers, and young pods in soups \cite{6}. In the Philippine Islands, the young pods are cooked as a vegetable and roasted seeds are used as a substitute for coffee. The young dry seeds are popped like popcorn \cite{6}. In Indonesia, Thailand, Mexico and Central America people also eat the young leaves, flowers, and young pods as an ingredient for soups and salads. Seeds are being considered as non-conventional sources of protein, together with other leguminous seeds \cite{6}. In addition, it is one of the medicinal plants used to control stomach ache, as contraception and abortifacient.

\textbf{Physicochemical studies}

The physicochemical screening of leaf extract of \textit{L. leucocephala} revealed the presence of various secondary metabolites as alkaloid, cardiac glycosides, tannins, flavonoids, saponins and Glycosides \cite{3}.

\textbf{Bioactivity studies on this plant revealed its anthelmintic, antibacterial, anti-proliferative and antidiabetic activities \cite{8}. The \textit{L. leucocephala} leaves possess many biological properties such as antimicrobial, anticancer, cancer preventive, diuretic, anti-inflammatory, antioxidant; antitumor, antithrombin, nematicide, pesticide, antiandrogenic, hypcholesterolemic and hepatoprotective (table 2) \cite{6}.}
Table 2: Phytochemical compounds identified from the *L. leucocephala* leaf extracts and their therapeutic Activity [6]

<table>
<thead>
<tr>
<th>No</th>
<th>Compound</th>
<th>Secondary metabolite</th>
<th>Therapeutic activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phytol</td>
<td>Diterpene</td>
<td>Antimicrobial, anticancer, cancer preventive, diuretic, anti-inflammatory</td>
</tr>
<tr>
<td>2</td>
<td>Squalene</td>
<td>Triterpene</td>
<td>Antibacterial, antioxidant, antitumor; cancer-Preventive, chemopreventive, immunostimulant, lipoproteinase-inhibitor, perfumery, pesticide, sunscreen</td>
</tr>
<tr>
<td>3</td>
<td>n-Hexadecanoic acid</td>
<td>Palmitic acid</td>
<td>Antioxidant, hypcholesterolemic nematicide, pesticide, antiandrogenic, flavor</td>
</tr>
<tr>
<td>4</td>
<td>Pentadecanoic acid, 14-methyl, methyl ester</td>
<td>Palmitic acid methyl ester</td>
<td>Hemolytic; 5-alpha reductase inhibitor, Antioxidant.</td>
</tr>
<tr>
<td>5</td>
<td>Hexadecanoic acid, 15-methyl, methyl ester</td>
<td>Fatty acid ester</td>
<td>Antioxidant, nematicide, pesticide, flavor, antiandrogenic</td>
</tr>
<tr>
<td>6</td>
<td>3,7,11,15-Tetramethyl-2-hexadec-1-ol</td>
<td>Terpene alcohol</td>
<td>Antimicrobial</td>
</tr>
<tr>
<td>7</td>
<td>9,12,15-Octadecatrienoic acid, methyl ester</td>
<td>Linoenic acid ester</td>
<td>Anti-inflammatory, insectifuge hypcholesterolemic, cancer preventive, nematocide, hepatoprotective, insectifuge, anti histaminic, antieczemic, anticiteae, 5-alpha-reductase inhibitor, antiandrogenic, antiarrhithmic, anti-coronary</td>
</tr>
<tr>
<td>8</td>
<td>9,12-Octadecadienoic acid, methyl ester</td>
<td>Linoenic acid ester</td>
<td>Anti-inflammatory, nematicide, insectifuge hypcholesterolemic, cancer preventive, hepatoprotective, antihistaminic, anticiteae, antieczemic, antiarrhithmic</td>
</tr>
<tr>
<td>9</td>
<td>Oxalic acid, allyl hexadecyl ester</td>
<td>Dicarboxylic acid</td>
<td>Acaricide, antiseptic, CNS-paralytic, fatal, hemostatic, irritant, pesticide, renotoxic, varroacide</td>
</tr>
</tbody>
</table>

(Modified from Dr. Duke’s: phytochemical and ethnobotanical databases)

L. leucocephala seeds have great medicinal properties and are used to control stomachache, as contraception and abortifacient. The seed gum used as a binder in tablet formulation [6]. A sulfated glycosylated form of polysaccharides from the seeds was reported to possess significant cancer chemo-preventive and antiproliferative activities [1]. The extracts of the seeds have reported as antihelminthic, antiabetic and have a broad spectrum antibacterial activity [1]. Recently, the seed oil was used in engineering as a novel bio-device useful in biomembrane modelling in lipophility determination of drugs and xenobiotics [1]. The plant is reported to be a worm repellent.

Pharmacological activities

Antioxidant activity

L. leucocephala leaf and seed extracts have antioxidant activity [89]. Leaf extracts contain, as a principal constituent, 2-(H)-benzofuranone-5, 6, 7, 7a-tetrahydro-4, 4, 7a-trimethyl [25] and phenolic compounds and flavonoid quercitin was also isolated from the leaves extracts [90].

Antidiabetic activity

L. leucocephala has been reported to possess medicinal properties that control stomach diseases, facilitate abortion and provide contraception, and it is often used as an alternative, complementary treatment for diabetes [25]. Leaf and seed extracts also have antidiabetic activity [90]. An aqueous extract derived from its boiled seeds was taken orally to treat Type-2 diabetes [92].

The seed extract from *L. leucocephala* inhibits elevated blood glucose and lipids levels but increases the number of pancreatic islets [93]. The active fractions from *L. leucocephala* seeds have been reported to have antidiabetic activity [94]. Moreover, the seed extract from *L. leucocephala* exhibits antidiabetic and antioxidant activities and can be used for the treatment of diabetes without affecting hepatic function, but there is an impact on renal function [91]. In Indonesia, an aqueous extract derived from boiling the seeds of *L. leucocephala* is taken orally to treat type-2 (NIDDM) diabetes and is claimed to be efficacious [95].

Antimicrobial activity

L. leucocephala seed oil extract had a concentration-dependent activity against both Gram-positive (*Staphylococcus aureus, Bacillus subtilis*) and Gram-negative (*Pseudomonas aeruginosa, Escherichia coli*) bacteria and the lotion formulation with an emulsifying agent had good pharmaceutical properties [96]. The crude extract of *L. leucocephala* leaves exhibits anti-tubercular activity that supports the use of this plant as mentioned in the folklores [97].

Anti-inflammatory

The anti-inflammatory property of chloroform, ethyl acetate and methanol extracts of leaves of *L. leucocephala* was reported [6].

Antitumor activity

Hexane, petroluem ether, ethyl acetate and methanol extracts of leaves of *L. leucocephala* showed antitumor activity [6].

Wood uses of *L. leucocephala*

Its uses have been expanded to gum production, furniture and construction timber, pole wood, and pulpwood [3, 24].

CONCLUSION

L. leucocephala is one of the miracle timber trees. It has multipurpose uses including beneficial pharmacological properties. Further studies revealed the presence of various secondary metabolites as alkaloid, cardiac glycosides, tannins, flavonoids, saponins and Glycosides. Its seeds have great medicinal properties and used to control stomachache, as contraception and abortifacient. The seed gum used as a binder in tablet formulation and the extracts of the seeds used as anthelmintic, antiabetic and has a broad spectrum antibacterial activity. To date, no information is available about the pharmacological activities of flower, fruit, bark, wood branch, stem and root of *L. leucocephala* which need further studies.

CONFLICT OF INTERESTS

Declared none

AUTHORS CONTRIBUTIONS

All the author have contributed equally

REFERENCES

44. N Tomkins, NP McNeniman, RC Daniel. Voluntary feed intake and digestibility by red deer (Cervus elaphus) and sheep (Ovis aries) of pangola grass (Diptaria decumbens) with or without a supplement of Leucaena (Leucaena leucocephala). Small Rumin Res 1991;5:337-45.

49. L Reynolds, SO Adefarain. The effects of browse supplementation on the productivity of West African Dwarf sheep over two reproductive cycles. Goat Production in the...
humid tropics. Proceedings of a workshop at the University of Ife, Ile Ife Nigeria; 1987.

87. S Chowtvramanakul, T Talumboom. Antioxidant and antimicrobial activities of leaf and seed extracts from Leucaena leucocephala
91. P Chowthvannakul, S Buavaroon, T Chusri. Antidiabetic and antioxidant activities of seed extract from Leucaena leucocephala (Lam.) de Wit. Agric Natural Resources; 2017. p. 1-5.