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ABSTRACT  

Objective: The aim of the present study was to express in Mycobacterium smegmatis the clustered mycobacterial genes coding for lycopene 
synthesis and to investigate the protective properties of lycopene against ultraviolet (UV) irradiation. 

Methods: The genes, which encode the biogenesis of lycopene in Mycobacterium aurum A+, were introduced into Mycobacterium smegmatis by 
electroporation. The pigments produced were analyzed by thin layer chromatography, and the absorption spectra were determined. A survival test 
using UV irradiations was also performed. 

Results: The transformed Mycobacterium smegmatis were found to synthesize lycopene with important yield (1.41± 3.09 mg/g) and was more 
resistant to ultraviolet irradiation than non-pigmented strain (p<0.01). Furthermore, cells of M. smegmatis not transformed but coated with 
lycopene are more resistant to UV than those uncoated (p<0.01). 

Conclusion: M. smegmatis can form orange colonies on agar plates when it is transformed with the lycopene genes, and the transformants produces 
1.41 mg/g (dry weight) of this carotene. Our findings strongly suggest that lycopene has antioxidant activities and prevent the lethal action of UV 
irradiation on bacterial cells in vivo and in vitro, and deserves further studies considering the amelioration of the production. 
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INTRODUCTION 

Carotenoids are a big family of fat-soluble pigments largely 
distributed in nature, in anoxygenic and oxygenic photosynthetic 
bacteria, algae and in many fungi, but animals and human are not 
able to produce this kind of pigments themselves [1, 2]. Carotenoids 
are a class of hydrocarbon compounds that can be chemically 
subdivided into xanthophylls (oxygenated molecules) and carotenes 
(hydrocarbons lacking oxygen). These tetraterpenes usually consist 
of 8 isoprene units derived from isopentenyl diphosphate [3]. 

Carotenoids are produced through two different stages, the early 
steps and the later steps. The early steps include the formation of 
geranylgeranyl pyrophosphate (GGPP) from farnesyl pyrophosphate 

(FPP) by GGPP synthase (an enzyme encoded by the crtE gene). The 
formation of phytoene from GGPP is catalyzed by phytoene synthase 

(an enzyme encoded by the crtB gene). The phytoene obtained is 
then dehydrated by a phytoene dehydrogenase (an enzyme encoded 

by the crtI gene) by converting phytoene into lycopene via the 
following intermediate molecules: phytofluene, zeta-carotene and 

neurosporene [4-6].  

Many carotenoid biosynthesis genes have been cloned and 
characterized from various organisms, and the functions of the gene 
products have been demonstrated [7, 8]. 

Lycopene (molecular formula: C40H56), is a bright red phytochemical 

pigment. It is present with a considerable concentration in tomatoes, 
some fruits, and vegetables [9]. Lycopene is the most common 

carotenoid in the human body. It is classed among the most potent 
antioxidants [10]. It is also, one of the most commercially carotenoids.  

A great deal of interest has recently been focused on lycopene due to 
its excellent performance as an antioxidant [11], anticancer [12], anti-
inflammatory [13, 14], and antimicrobial substance [15]. It has been 
used as a pharmaceutical compound, nutraceutical, functional food, 

and cosmetics additive. The global lycopene market was about 1.5 G$ 
in 2014 and is expected to reach 1.8 G$ by 2019 [4]. Potential 
commercial applications mean that efficient biotechnological 
production of lycopene has become increasingly necessary [16]. 
Industrial lycopene production is mainly assured by chemical 
synthesis and extraction from tomatoes [17], although some lycopene-
producing microorganisms are also being used on a smaller scale [18].  

The aim of the present study was to evaluate the radioprotective 
effect of lycopene on UV radiation-induced cellular damage. Thus, 
we decided to express in Mycobacterium smegmatis the 
carotenogenesis genes from Mycobacterium aurum A+.  

MATERIALS AND METHODS  

Chemicals 

The following Solvents are used in pigments analysis and chemical 
tests: methanol (LabKem, Spain), chloroform (Sigma-ALDRICH, 
Germany), acetone (Sigma-ALDRICH, France) and petroleum ether 
(Sigma-ALDRICH, Germany). All other ingredients used were of 
analytical grades. 

Bacterial strains, plasmids, media and growth conditions 

M. smegmatis MC2-155 (kans [19], laboratory stock) was used in the 
current study. Growth conditions were chosen according to the 
experimental requirements. Mycobacterial strains were grown at 37 °C, 
in sauton medium (monopotassium phosphate, 1.0 g/l; disodium 
phosphate, 2.5 g/l; magnesium sulfate, 0.01 g/l; zinc sulfate, 0.001 
g/l; copper sulfate, 0.001 g/l; ferric ammonium citrate, 0.05 g/l; 
Casitone 2.0 g/l; asparagine, 5.0 g/l; and glycerol, 10.0 g/l) [20, 21]. 

M. smegmatis MC2-155 strain was used as a host for the plasmids 
(pC51 and pHLD69). The pC51 plasmid consists of pHLD69 vector 
and an insert of approximately 4.42 kb containing the M. aurum crtE, 
crtB and crtI genes necessary for lycopene biosynthesis [22]. The 
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pHLD69 vector contains pUC19, the Ori R of pAL5000, and the Kanr 
gene. The Ori R is responsible for plasmid replication in myco-
bacteria [23]. 

When necessary, media were supplemented with kanamycin (Kan) 
at a concentration of 50 µg/ml. 

Transformation of M. smegmatis by electroporation 

Cells were transformed with pC51 plasmid. The transformants 
obtained were then selected on a sauton medium containing an 
appropriate concentration of Kan. The preparation of M. smegmatis 
competent cells and the electroporation were performed by using 
procedures identical to those described by Snapper et al. [19]. DNA 
was introduced into mycobacterial cells using the Gene Pulser 
(Biorad) set at 2.5 kV, 25 µF, with the pulse controller resistance set 
at 200 Ω. Approximately 2 µg of plasmid DNA was transferred to a 
pre-cooled 1 mm electroporation cuvette containing electro-
competent cells. The cuvettes were placed in the electroporator and 
subjected to a single pulse. The cells were immediately transferred to 1 
ml sauton medium and incubated at 37 °C for 3h. The transformants 
were then screened and cultured on sauton plates with Kan at 50 
μg/ml and 37 °C. 

Extraction and purification of carotenes 

Chloroform/methanol (1: 1, v/v) were used to extract carotenoid 
pigments from the transformants carrying the lycopene biosynthesis 
gene cluster until all visible pigments were removed. After the 
centrifugation step (4000 rpm for 5 min), the supernatants obtained 
were pooled and dried under vacuum. The colored residues were 
then dissolved in pure acetone, refrigerated at 4◦C for two hours, 
and then clarified by centrifugation. The extracts were dried and 
dissolved in methanol: petroleum ether (1: 1, v/v). The mixtures 
were vigorously vortexed, and the pigments were then allowed to 
partition. The upper phase was collected, evaporated to dryness and 
the residue obtained was dissolved in acetone for chromatographic 
analysis [22]. The entire extraction process was performed under 
low-light conditions to prevent photo bleaching and degradation. 

Thin-layer chromatography (TLC) 

The epiphasic pigments were separated by preparative TLC using 
watman-silica gel 60A plates. The latters, were subsequently 
developed using 2% (v/v) acetone in petroleum ether as a running 
solvent. Lycopene from tomato was extracted in accordance with the 
method described by Lu et al., 2008 [24] and used as a standard. The 
individual zone on the chromatogram was separated, eluted with 
acetone, and then, spectra were measured. Identification of 
carotenoids was carried out by comparing the individual 
characteristic absorption spectrum and chromatographic properties 
with a known standard and published data [22, 23].  

Quantification of lycopene levels  

The cells containing pC51 plasmid were grown on sauton agar for 
seven days. The pigments were extracted as described above. The 
lycopene content of the extracts was determined by visible light 
absorption spectra using a spectrophotometer (BK-UV1000; 

BIOBASE, China). Finally, spectras were recorded in acetone using 
an extinction coefficient of 3450. 

Protective effect of lycopene in vivo 

M. smegmatis cells containing the plasmid pC51 and cultivated on 
sauton-agar at 37 °C for 7 d were diluted to have 104cells/ml. 100 µl 
of the diluted culture was plated on sauton-agar medium and then 
irradiated for a given period of time (4, 6, 8, 10, 11 or 12 min) using 
a UV lamp (6 W-254 nm tube; Vilber Lourmat, French) from a 
distance of 57 cm. The number of bacterial colonies was determined 
after 7days of incubation. The same method was used for the 
controls (M. smegmatis and M. smegmatis transformed by pHLD69). 
The average values were calculated based on six replicate 
measurements. 

The statistical student test [25] is used to compare the resistance of 
strains to UV radiation. Statistical significance was defined as p<0.01. 

Protective effect of lycopene in vitro 

This experiment aims to evaluate the capacity of lycopene to protect, 
in vitro, M. smegmatis cells against UV radiation. Lycopene used in 
this experiment was extracted from M. smegmatis transformed with 
pC51 according to the protocol described above. The lycopene 
extracted was solubilized in the sweet al. mond oil so as to have a 
concentration of 0.1 mg/µl of oil. Liquid culture of M. smegmatis was 
prepared, and the D. O was adjusted to 0.1. 900 μl of this culture is 
transferred to each of the following tubes:  

- Tube 1: contains lycopene solubilized in 100 μl of almond oil. 
The final concentration of lycopene was 0.01 mg/µl of oil. 

- Tube 2: contains 100 μl of sweet al. mond oil (control). 

- Tube 3: contains 100 μl of sauton broth (control). 

100 μl of each tube was plated on sauton agar medium and then 
exposed to UV light using an UV lamp (6 W-254 nm tube; Vilber 
Lourmat, French) with respect to the distance from UV lamp (57 cm) 
and the exposure times (5, 10, 15 and 20 min). 

Statistical analysis 

The experiments are repeated three times. Results were expressed 
as mean±standard deviation (SD) of the three triplicates. Student's 
statistical test was used to compare the resistance of different tests 
to UV radiations.  

RESULTS  

Obtaining of orange-pigmented colonies of M. smegmatis 

In the present study, M. smegmatis (a bacterium capable of forming 
non-pigmented colonies) was transformed with the pC51, vector 
constituted of the pHLD69 plasmid, and an insert of 4.42 kb 
containing genes necessary for lycopene biosynthesis [22]. All 
transformants obtained were orange (fig. 1), whereas M. smegmatis 
harboring pHLD69 was not pigmented and did not form any 
carotene. It was therefore concluded that the insert of pC51 is 
responsible of the pigmentation of this bacteria. 

  

 

Fig. 1: Colonies of M. smegmatis transformed with pC51 plasmid (A) and M. smegmatis none transformed (B) 
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Analysis of carotenoids 

Pigments produced by M. smegmatis harboring pC51 plasmid were 
extracted, purified and analyzed by TLC (fig. 2). The extracted 
carotenoid pigments were identified as shown in fig. 2 and fig. 3. 

 

 

Fig. 2: TLC analysis of lycopene extracted from tomato (A) and 

pigment produced by M. smegmatis transformed with pC51 

plasmid (B) 

 

The TLC chromatogram of extracts from M. smegmatis transformed 
with pC51 plasmid shows the presence of one major compound. It 
also shows that the absorption spectrum of the purified and eluted 
carotenoid was identical to that of lycopene especially that from 
tomato (fig. 3). This means that the orange color of the pigmented 
strain was mainly caused by the accumulation of lycopene. Thus, the 
results obtained in this section demonstrate that lycopene was 
formed by the transformants and it was the major end product of 
carotenogenesis in transformants. 

Quantification of lycopene levels  

The lycopene levels were determined using stationary-phase-grown 
cells by extraction followed by spectral analysis. The M. smegmatis 
transformed by pC51 yielded value of 1.41± 3.09 mg/g (dry weight) of 
lycopene. 

 

Fig. 3: The spectrum of pigments and lycopene extracted from 

M. smegmatis (pC51) and tomato, respectively 

 

Lycopene effect in vitro and in vivo on the survival rate of M. 

smegmatis 

To evaluate the in vitro and in vivo antioxidant activity of lycopene 
produced by M. smegmatis transformed by pC51 plasmid, an 
investigation on survival M. smegmatis strains in the presence of UV 
light was carried out. The idea was based on the exposition of M. 

smegmatis transformed by pC51 plasmid and M. smegmatis covered 
by a layer of lycopene to UV light. 

The results show that at a distance of 57 cm, cells of M. smegmatis 

transformed by pC51 plasmid were more resistant compared to the 
parallel controls (M. smegmatis and M. smegmatis containing 
pHLD69) (fig. 4), and M. smegmatis MC2 cells which were coated by 
lycopene (0.01 mg/μl) were more resistant to UV compared to those 
uncoated or those coated with oil only (fig. 5). The statistical test 
also shows that the observed differences in terms of survival 
fraction were significant. As a conclusion, lycopene can reduce the 
lethal action of UV radiation significantly, and that could contribute 
to protect cells in vitro and in vivo from UV light. 

 

 

Fig. 4: Susceptibility of various M. smegmatis strains to UV radiations, data are shown as mean±SD, n=3, p˂0.01 is considered statistically 

significant 
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Fig. 5: Protector Effect of lycopene in vitro against UV radiations, values are expressed as mean±SD, n=3, p˂0.01 is considered statistically 

significant 

 

DISCUSSION 

In many studies, carotenoid synthesis was found to be dependent on 
the amount and the activity of the carotenoid biosynthetic enzymes. 
In fact, the application of recombinant DNA technology can be used 
to increase the carotenoid productivity [26]. This is consistent with 
the finding published by Iraqui et al. [22] who obtained orange 
clones of E. coli in the presence of pC51. 

In the present study, successful production of lycopene in M. 

smegmatis MC2-155 transformed with mycobacterial genes has been 
demonstrated and validated. The carotenoid production indicated 
that carotenogenesis genes from M. aurum had been successfully 
expressed in M. smegmatis. The production of lycopene from IPP 
needs GGPP synthase, phytoene synthase and phytoene desaturase 
enzymes [22] with Intermediate precursors of phytoene, phytofluene, 
ζ-carotene, and neurosporene, successively [6]. However, none of 
these intermediates was detected in this study, which is perfectly 
consistent with the findings of Houssaini-Iraqui et al. [22] who 
reported that carotenes were converted into lycopene. 

The production of lycopene using microbial sources is presently of 
great interest [8, 27]. M. smegmatis containing pC51 plasmid 
produces a significant quantity of lycopene. This production may be 
improved by transcribing the pC51 inserted fragment from a strong 
promoter, and eventually, this system could be used as a source of 
production of this carotenoid.  

It was also found that lycopene is capable to protect M. smegmatis 
significantly, in vitro and in vivo, against the lethal action of UV 
radiation. UV radiation acts indirectly on the cellular constituents, 
through oxidative mechanisms that form reactive oxygen species 
(ROSs) [28]. The latters have the potential to damage critical cellular 
components such as: nucleic acids, proteins, lipids, polysaccharides 
[29]. This leads in most cases to irreversible modifications [30]. As a 
result, ROSs are emerging as important actors in the etiology of 
neurodegenerative disorders such as Alzheimer and Parkinson [31], 
cancer and cardiovascular disease (CVD) [32]. Based on its features 
and intrinsic properties, lycopene provides opportunities for 
reducing oxidative damages due to its strong antioxidant activity. 
The presence of a significant number of conjugated dienes in its 
structure is responsible of the high antioxidant activity of the 
lycopene. This allows lycopene to single oxygen activity (the 
quenching ability of this oxygen is two and ten times higher than 
that of β-carotene and α-tocopherol, respectively, [10]) and its free 
radical scavenging capacity [33]. Therefore, lycopene can effectively 
contribute to prevent a range of oxidative damage, toxicity [34], and 
some chronic diseases such as cancer [35], CVD [36] and 
degenerative diseases [37]. 

According to the UV light survival tests, it appears that lycopene can 
significantly reduce the lethal action of UV light in both in vivo and in 

vitro experiments. These results are in perfect agreement with the 

data published by Houssaini-Iraqui et al. [22] and Srinivasan et al. 
[34] who reported that lycopene has a protective effect against UV 
radiation.  

Finally, it is well known that many sunscreens contain substances 
that have some toxicity effect on skin health. Recent research trends 
to the use of antioxidants in sunscreens to provide photoprotection 
like plants with antioxidants [38, 39]. The results obtained in this 
study highlighted the protective effect of lycopene against UV 
damage. Therefore, it would be important to prepare a commercial 
sunscreen based on lycopene to maintain a healthy skin of the 
consumer.  

CONCLUSION 

In conclusion, M. smegmatis used as a host of a plasmid containing 
lycopene genes can form orange colonies on sauton plate, and the 
production found to be important (1.41 mg/g (dry weight) of 
lycopene). It was found that this carotene has antioxidant activities 
and protect the bacterial cells from the lethal action of UV irradiation 
in vivo and in vitro and deserves additional research to improve the 
production of lycopene by M. smegmatis in order to use it as a bio-
alternative source for large-scale production. 
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