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ABSTRACT 

Removal of excess of free iron, produced under certain physiological conditions in human body, has always been of great concern for therapists 
worldwide. A number of naturally occurring and synthetic ligands are being explored for maximal iron decorporation, enhanced patient compliance 
and minimal side effects. Siderophores are the most important class of currently used chelators and few of them are approved for treating iron 
overload. This review focuses on the developments taking place in the field of iron overload treatment to find the most novel, efficient and safest 
iron decorporating agent. The importance of many natural and synthetic iron scavengers, having potential for clinical application in the treatment of 
iron overload and their associated side effects, are discussed along with the currently followed methods. Special emphasis is given to review the 
status of new ligands, combination therapy and methodologies adopted for overcoming limitations of existing therapeutic agents for treatment of 
different iron overload disorders. 
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INTRODUCTION 

Iron is an essential and most abundant transition metal in human 
body. Iron overload is a condition of excess iron stores in different 
parts of body. Since very little iron is excreted from the body 
normally, it becomes a potentially toxic heavy metal in case of 
accidental ingestion, transfusional siderosis (e. g. β-thalassemia, 
sickle cell disease) or hereditary conditions (e. g. hereditary 
hemochromatosis) leading to the production of destructive free 
radicals [1, 2] and life threatening complications such as cirrhosis, 
hepatocellular cancer, diabetes and heart diseases [3]. According to 
the Institute of Medicine of the National Academy of Sciences, 
Washington, the tolerable upper level of iron intake for healthy adult 
males and females is 45 mg/day [4].  

Transferrin (Tf) (fig. 1) is a freely circulating natural iron chelator in 
human blood responsible for uptake of free iron after intestinal 
absorption and storing it as intracellular ferritin or hemosiderin. In 
normal humans, Tf is only 25-30% saturated with iron while in iron-
overload it becomes completely saturated, leading to the appearance 
of non transferrin bound iron (NTBI) in blood and tissues.  
 

 

Fig. 1: Structure of protein transferrin 
(http://en.wikipedia.org/wiki/Transferrin) 

Efforts are being made since long time for effective diagnosis and 
management of free iron in human body. Phlebotomy and chelation 
therapy, either alone or in combination, are currently the most widely 
used clinical practices to reduce iron overload. Lot of work is being 
done all over the world to find the most suitable therapeutic agent 
having enhanced efficacy and reduced toxicity so as to overcome the 
limitations of commercially available iron decorporating agents. 

Iron toxicity 

The overburden of iron in body leading to the production of NTBI 
and tissue iron are commonly called as ‘free iron’. Free iron (Fe+3) in 
body acts as antioxidant because of its ability to gain and loose 
electrons. The highly reactive free radicals generated by free iron 
could damage vital organs and tissues of body (fig. 2), by reacting with 
surrounding biomolecules [5-7], as indicated by increase in 
biomarkers in iron overloaded thalassemia and sickle cell patients [8].  

 

 

Fig. 2: Effect of oxidative stress on vital organs of human due to 
free blood circulating and tissue iron 

 

These oxygen free radicals may be utilized by cancer cell for growth 
and indefinite division [9]. Iron toxicity is also associated to lipid 
peroxidation [10], increased plasma histamine and serotonin in 
patients suffering from hemochromatosis, sickle cell disease, 
thalassemia, myelodysplastic syndrome, African iron overload, 
Atransferrinemia, sideroblastic anemia etc. 

Classical method of iron decorporation-phlebotomy 

Decorporation of any toxic substance from human body has been an 
important practice since the ancient times. The ancient medical 
practitioners used to remove the blood borne toxins by removal of 
excess blood from patient’s body [11]. This clinical process of 
drawing large volume of blood from patient’s body is called 
phlebotomy. It is the simplest, safest and most inexpensive 
treatment for excess iron decorporation [12]. The procedure 
involves venipuncture in which blood is removed from veins of 
patient’s arm, through a narrow bore needle, for a period of 
approximately 30-45 minutes. Before initiating the procedure, the 
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practitioner must be aware of the patient’s serum ferritin levels 
(men ≥ 300 µg/l & women ≥ 200 µg/l).  

Studies have suggested that decrease in serum ferritin level is the 
most reliable indicator for monitoring the progress of therapeutic 
phlebotomy instead of transferrin saturation or serum iron [13]. 
Initially the procedure is done till the serum ferritin levels reach 
20% of the initial value after which the therapy should be done at 
regular intervals [14]. Therapy should be discontinued when serum 
ferritin level drops below 20-50μg/l. Twice weekly phlebotomies 
may be suggested for heavily iron-loaded patients. Phlebotomy 
procedure was found to mobilize iron from body stores when 
patients have iron level>1000 µg/ml were treated every 1-2 week 
with 500 ml of blood removed during each session depending on 
body weight [15]. As compared to women, men usually require twice 
the phlebotomy units to induce iron depletion [14].  

Phlebotomy has been found beneficial in case of iron overload 
problems occurring due to periodic blood transfusions such as β-
thalassemia and sickle cell anemia [16, 17]. Prolonged phlebotomy at a 
rate of 6-ml/kg-body weight, for several years in β-thalassemia 
patients, was found to be highly effective to mobilize excess iron from 
48 patients under study [18]. Russell and coworkers used a 
combination of hydroxyurea treatment and phlebotomy to increase 
fetal hemoglobin and reduce the iron overload and observed 
decreased serum ferritin from average level of 3134 ng/ml to 617 
ng/ml as well as non recurrence of strokes in sickle-cell affected 
children [19]. They suggested the combined treatment to be a better 
option rather than commonly used siderophores that suffers 
numerous side effects. A team of Chinese workers also found 
considerable decrease in serum ferritin levels among phlebotomy 
treated patient groups [20]. Bone marrow transplantation is adopted 
as a treatment procedure to cure thalassemia [21] and phlebotomy 
performed in such cases has helped patients to get relieved from the 
iron overload that persisted in their bodies for many years after 
treatment. Erythropoetin-assisted phlebotomy was found beneficial 
for thalassemia patients suffering from iron overload due to allogenic 
hematopoetic stem cell transplantation [22-24]. 

Therapeutic phlebotomy is the preferred treatment for hereditary 
hemochromatosis patients. Iron overload in such patients was also 
found to be associated with hyperlipidemia [25] as a result of mutation 
in HFE gene [26] and phlebotomy procedure was found to be highly 
effective for such patients [27]. Cardiac function was greatly improved 
in patients with primary hemochromatosis by undergoing aggressive 
phlebotomy [28-31]. Repeated phlebotomy has shown a drastic 
decrease in spleen ferritin level in iron overloaded rat models [32]. 
Eleven patients with chronic liver disease and associated iron overload 
showed an improvement in cytolysis when 300 ml of blood was 
removed from their bodies for five consecutive weeks [33]. 
Therapeutic phlebotomy showed resolution in some observed 
complications of iron overload such as elevated hepatic serum 
aminotransferases [34], hepatomegaly [35], cutaneous 
hyperpigmentation [36], hyperferritinemia [37] and rarely improves 
certain others such as diabetes mellitus [38, 39], cardiomyopathy 
[40]and refractory arrhythmia [41]. Regular therapeutic phlebotomy 
has resulted in an increase in longevity as well as quality of life [42]. 
Regular phlebotomy is suggested as the ultimate treatment for 
patients with end-organ damage due to iron overload [43]. 

However iron overload resulted hepatic cirrhosis cannot be resolved 
by therapeutic phlebotomy leaving the patients at higher risk for 
liver cancer [36]. Disadvantages associated with the procedure 
involve exacerbation of joint pains, difficulty to operate on young 
children, difficult methodology, excessive pain and non-compliance 
(Fig.3). Several physiological and psychological therapies are given 
for pain relief to patients undergoing therapeutic phlebotomy such 
as hot and cold packs, distraction and relaxation [44]. According to 
the French Superior Health Security, at-home phlebotomy should be 
recommended for hereditary hemochromatosis patients to reduce 
health care expenditures and improve patient compliance [45].  

Current methods of iron decorporation 

Repeated phlebotomy is often required to treat iron overload in 
patients with thalassemia [46] that leads to incompliance and 

extreme pain. Also the therapy cannot be given to patients who are 
hemodynamically unstable and suffer congestion problems related 
to heart [47]. Therefore drug therapy is commonly prescribed to 
such patients. Currently drug therapy involving chelation of free iron 
from blood has become a routine practice for treating iron 
overloaded patients. The best way to mobilize a toxic metal out of 
the body is to chelate it with a specific ligand and wash off the stable 
ligand-metal complex through excretory system of body. Such 
ligands are mostly organic molecules called as chelating agents, 
chelators or sequestering agents that have a very high specificity for 
certain metal ions. Till now researchers have suggested a number of 
natural and commercially prepared ligands that can be used as iron 
chelators (fig. 4). 

 

 

Fig. 3: Advantages and side effects of Phlebotomy procedure for 
iron decorporation 

 

 

Fig. 4: Classification of chelators commonly used in iron 
chelation therapy 

 

Natural chelators 

The naturally occurring chemicals in plants are called 
phytochemicals. Many of these phytochemicals have been used over 
a long time and found to bind iron. Therefore workers are trying to 
explore certain natural agents as iron chelators in humans. 

Phytochemicals 

Phytic acid (InsP6, myo-Inositol hexaphosphate) which is the storage 
component of most cereal grains and seeds [48] has been found to 
inhibit free radical formation in a ferric ion standard assay and was 
effective similar to the commonly used chelator Deferoxamine 
mesylate [49]. Spinach, beans and nuts have significant levels of 
oxalic acid that inhibits iron absorption. An administration of 
wheatgrass juice of a week old leaves daily for six months reduced 
the iron burden in myelodysplastic syndrome patients [50]. The 
catechins (flavonoids) such as epigallocatechin gallate and 
epicatechin gallate are pharmacologically active components of 
green tea (suggested by many natural medicine practitioners) that 
form a complex with ferric ions and aid in the chelation of NTBI [51] 
as well as penetrate the brain barrier and remove the abnormally 
accumulated iron on dying neurons in certain neurodegenerative 
disorders such as Parkinson’s disease [52]. The flavonoids and 
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phenolic compounds being the active components of plant extracts 
have been suggested to possess iron-chelating properties [53, 54] by 
acting as the free radical terminator [55]. Mohammad Ali and 
coworkers prepared extract from a series of plant parts and 
determined the amount and chelation properties of phenols and 
flavonoids present in them [56]. They found that plants showing 
highest content of these compounds also showed the highest iron 
chelating properties. Silybin (200 mg/kg), a flavonoid derived from 
the herb milk thistle (Silybum marianum), has been found to reduce 
elevated iron levels in kidney [57-59]. The iron chelating ability of 
curcumin and its diacetyl derivatives was found to lie in the enolic 
form of β-diketo moiety [60]. Later the orally available glycosyl 
derivatives of curcumin were prepared by reducing the molecular 
weight and hydrophilicity for enhanced absorption through small 
intestine [61]. Though a number of Ayurveda preparations are 
prescribed for treating iron overload yet none of them is currently 
approved for routine clinical application. 

Siderophores  

Siderophores are low molecular weight (500-1000Da) iron 
sequestering agents produced by certain microbes in response to the 
utilization of insoluble form of iron present in soil [62, 63]. They 
exhibit strong specificity towards ferric iron. The research in this 
field began around six decades ago. The first siderophores to be 
chemically identified were amino acid conjugates of 2,3-
dihydroxybenzoic acid i. e itoic acid (2,3-dihydroxybenzoylglycine) 
[64]. Since then more than 500 different types of siderophores have 
been isolated and characterized [65, 66]. Siderophores play an 
important role not only to treat iron overload [67,68] but also to 
keep balance in the dietary iron intake and excretion in body fluids 
[69, 70]. Siderophores used in human medicine are classified 
according to the chemical nature of their metal binding 
functionalities as under:  

Hydoxamate based siderophores 

These hydroxamic acid containing siderophores are highly hydrophilic 
and can permeate membranes by forming neutral tris complex with 
ferric ion [71, 72]. More and more new compounds are being explored 
under this category due to their good iron chelating properties. 
Hydroxamates are poorly absorbed through the gastrointestinal tract 
and are therefore delivered through the parenteral route [73, 74]. 
Typical tri-hydroxamate siderophores are ferrichromes, fusarinines 
and ferrioxamines out of which only ferrioxamines are widely used for 
treating iron overload associated with a number of diseases in 
humans. It comprises of a group of trihydroxamate siderophores 
produced by actinomycetes [75]. Since 60 years the most common and 
effective therapeutic agent belonging to this group is desferrioxamine 
(DFO), which is an FDA approved hexadentate chelator for treatment 
of iron toxicity in human subjects [76-78] and is commercially 
marketed in the form of its methane-sulfonate salt. Before DFO, DTPA 
and dimerceprol were used [79, 80] and DTPA was found less effective 
as compared to DFO [81]. 

DFO is a colourless crystalline substance produced by the fungi 
Streptomyces pilosus [82]. It is impermeable through cell membrane 
and is taken up by cells through endocytosis for targeting primarily 
the excess iron present in liver and spleen. DFO has always been the 
drug of choice for iron decorporation due to its capacity to chelate 
iron effectively from ferritin and slowly from transferrin also [83-
85]. A combination of DFO with pyrophosphate was suggested to 
mobilize iron from transferrin which otherwise was not possible 
with DFO alone [86,87]. DFO is effective not only in treating NTBI 
but also chelates hepatocellular iron for removal through urine and 
bile [88]. Free DFO has a very limited stability in plasma and gets 
metabolized even at very low temperature storage. In-vitro 
radioactive studies have confirmed that ferrioxamine complex 
formed after binding of DFO to iron stabilizes the unbound form of 
the drug in patient’s plasma samples [89]. 

In the late 1960s it was realized that intramuscular DFO removed 
only limited amount of iron and hence ascorbic acid should be 
administered along with the chelator [90, 91]. Smaller doses of 
ascorbate (100-200 mg/day) given along with DFO chelated iron 
through urine as well as faeces [92]. DFO therapy was also found 

beneficial in improving cardiac function of patients suffering from 
iron overload disorders due to severe congestive cardiomyopathy 
[93]. Long-term DFO therapy is capable to prevent the severe 
complications of transfusional iron overload and to improve 
significantly the life expectancy of thalassemia patients [94-96]. 

However DFO is not orally available and has a short blood 
circulation time (5-10 minutes) [97] due to which it is administered 
as painful continuous infusion for 8-12 h atleast 5 days/week [98, 
99] and hence is poorly patient compliant. DFO therapy is expensive 
[100] with less than 10 mg iron removal in a single session. 
According to a recent FDA report, DFO treatment in 196 patients in 
age group of 10-59 years showed serious side-effects such as renal 
failure, gastritis, anaemia, decreased folate concentration and 6% of 
them even suffered the persisting iron overload (http://www. 
ehealthme. com). The chelator has been found unsuccessful in 
removing small increases in iron in rheumatoid arthritis patients 
[101]. Still DFO therapy is the choice of prescription for iron-
overloaded patients today in view of it being FDA approved and 
currently most worked ligand. 

Catecholate and phenolate based siderophores 

Catechol-based ligands are the most powerful known siderophores 
[102]. Enterobactin is a cyclic tricatecholate siderophore capable of 
rapid removal of iron from human transferrin [103] as well as 
possess greater in-vitro affinity for iron than transferrin [104]. But 
catechol subunits are somewhat air-sensitive [105] and therefore 
require protection by methyl, benzyl or acetyl groups. Its trimester 
backbone gets easily hydrolyzed at physiological pH and also has 
very low aqueous solubility [106]. Phenolic groups play a crucial 
role in iron chelation [107]. Cranberries are the richest source of 
total phenolic content among fruits [108] and quercitin present in 
cranberries is found to possess strong iron-binding properties in 
physiological conditions due to the presence of three iron-binding 
motifs [109]. Desferriothicin, a tridentate chelator of ferriothicin 
discovered in 1980s, is a subgroup of the ortho substituted 
phenolate class of iron chelators. It was the first orally available 
chelator capable of efficiently complexing with FeIII in 2:1 ratio in 
both iron overloaded rodent and primate models. Desferriothicin 
was however found to be highly nephrotoxic and therefore research 
is being done to prepare its analogs with similar oral activity but 
reduced toxicity. A few analogs prepared include Deferitrin, which 
underwent phase II clinical trials but was found to show severe renal 
toxicity [110]. FBS0701, an orally available member of the 
desazadesferrithiocin class of siderophore related tridentate 
chelators has demonstrated equal iron chelation ability to 
deferasirox and appears less toxic and is currently under phase II 
trial [111]. R-apomorphine used in late stage Parkinson disease 
therapy shows strong iron chelation and antioxidant properties due 
to its catechol structure [112]. 

Carboxylates and salicylates 

This class of sideophores contains hydroxyl and carboxyl functional 
groups as donor for iron chelation. Rhizoferrin was found to form 
1:1 iron complex as DFO and parabactin [113]. A series of 
aminocarboxylate chelators designed with a pendant aromatic group 
resulted in strong iron chelation as well as potent protective effect 
against oxidative damage [114]. 

Peptidic siderophores  

In view of the oral inactivity of DFO, pyoverdin type of peptidic 
siderophores isolated from Pseudomonas species were reported to 
be insensitive to proteases and thus suggested as oral chelators for 
iron overload disorders [115,116]. The two pyoverdins-PyA (from 
Pseudomonas aeruginosa ATCC15692) and PyF (from Pseudomonas 
fluorescens CCM2798) were found to be as effective as DFO in iron-
loaded rat hepatocyte cultures due to inhibited release of aspartate 
aminotransferase and lactate dehydrogenase enzymes. Both 
chelators decreased the intracellular iron level and increased the 
concentration of the metal in the culture medium. Later two 
bidentate chelators-hydroxypyridin-4-ones (CP20 and CP94) were 
also demonstrated as orally active chelators in iron overloaded 
animals and were found to be equally effective as the subcutaneous 
DFO [117]. However a recent comparison of efficacy of pyoverdin, 
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pyochelin and DFO to decorporate iron from ferritin showed DFO to 
be most effective in iron mobilization [118] and inhibition of lipid 
peroxidation [119] followed by pyoverdin and pyochelins.  

Synthetic chelators 

Owing to the expense and inconvenience associated with commonly 
used chelators such as deferoxamine or ferrichromes, a search for 
new and effective oral iron chelators has given rise to many 
synthetically produced compounds that possess improved 
pharmacological properties. Synthetic siderophores play an 
important role not only in our understanding of how natural 
siderophores function but also in the development of new improved 
therapeutic agents [120, 121]. Such chelators require easy and cheap 
production and must possess high specificity and high binding 
constant [122, 123] for specific metal ions. In 1960s, ferrioxamineB 
was the first siderophore to be synthesized to elucidate its chemical 
structure. Baret and coworkers proposed a series of tripodal iron 
sequestering agents based on o, o’-dihydroxybiaryl that were water 
soluble (due to sulfonation) and possessed well hydrolytic and 
oxidation stability [124]. The complexation of these agents with 
Fe+3in water showed similar results as the hydroxamate 
siderophores, but were poorer than the catecholate siderophores 
proposed by Raymond and coworkers. 

Hydroxypyridinones 

Hydroxypyridinones are bidentate, cyclic hydroxamic acid 
containing oral iron chelating ligands and currently the most 
important class of chelators being explored. In the late 20th century 
it was suggested that highly hydrophilic polydentate compounds are 
mostly orally bioavailable and can act as effective chelators [125]. In 
this respect a series of hydrophilic ligands based on kojic acid and 
substituted linkers were prepared (L4-L8) and strongest iron 
chelating activity was observed with L8 expected to remove iron 
from Tf in further studies [126]. On the other hand lipophilic 
hydroxypyridinone ‘CP094’ was prepared that readily suppressed 
NTBI as well as process of lipid peroxidation due to iron overload in 
sickle cells as compared to DFO [127]. Clinical studies on tridentate 
oral ligand pyridoxal isonicotinoyl hydrazone (PIH) suggested its 
easy permeation through cell membrane [128, 129] and highest 
selectivity for Fe III at lower doses [130]. A novel group of hybrid 
and less toxic oral chelators, the 2-pyridylcarboxaldehyde 
isonicotinoyl hydrazone (PCIH) analogues and 
pyridylcarboxaldehyde 2-thiophenecarboxyl hydrazone (PCTH) 
were found two times more effective than DFO or PIH in Tf iron 
removal from primary myocardiocyte cultures and mice [131, 132]. 
A range of 3-hydroxypyridin-4-ones (CP102, CP117, CP41) were 
designed to target the hepatocellular low molecular weight iron pool 
and were found to mobilize completely the intrahepatic chelatable 
iron pool in rats [133]. Two lipo-hydrophilic hexadentate 3,4-
hydroxypyridinone based compounds were prepared by attaching 
variable length alkyl-amino arms to tricarboxylic molecular scaffold 
of KEMP through amide linkage [134] so as to completely wrap free 
iron and form a stable complex [135]. Many researchers have 
reviewed the clinical applications and design of hydroxypyridinones 
for use in iron overload [136, 137]. N, N-bis(2-hydroxybenzyl) 
ethylenediamine-N,N-diacetic acid (HBED) is a hexadentate 
synthetic aminocarboxylate ligand that binds to iron in 1:1 ratio 
[138, 139]. The small size and lipophilicity of phenolic groups 
maintained ferric iron in redox inert ferrous form thus reducing the 
free radical toxicity [140]. Galey and coworkers synthesized pro-
drugs which got activated by reactive oxygen species into ones with 
high iron chelation ability and found them effective against in-vitro 
oxidative injury [141]. The monoethyl and dimethyl ester [142] 
containing pro-drugs of HBED have been reported to possess great 
oral bioavailability. However the toxicity of the molecules was 
observed due to presence of two coordinating N-atoms rendering 
the molecules to exhibit high affinity for ZnII ions. In order to 
increase iron chelation ability of 1-hydroxy-2-pyridinones, their 
tetra-dentate derivatives with amino-bisphosphonate moiety were 
prepared [143]. A Canadian researcher recently claimed to produce 
a new novel compound similar to deferiprone for treatment of iron 
storage in brain tissues of Parkinson affected patients [144]. The low 
molecular weight bi-and tri-ligands have been prepared for greater 

efficacy and higher oral bioavailability but are found potentially 
more toxic than hexadentate ligand [145] and therefore more 
research is required to prepare safer ligands. 

Deferiprone (Ferriprox®) 

Alternatively deferiprone is also known as CP2/l1/Kelfer. It is a 
hydrophilic small molecular weight hydroxypyridone (3-hydroxy-1, 
2-dimethylpyridin-4-one) and the first oral iron chelator introduced 
in Europe in early 1980s that eliminates iron through faeces [146]. 
Among various hydroxypyridinones discovered, the 3-hydroxy-4-
pyridinones are found most effective at physiological pH [147]. 
Large volume of work was done on this oral chelator between 1990-
2000 till deferasirox was found more suitable alternative. 
Deferiprone is a neutral molecule that readily enters into cell 
membrane and forms 1:3 iron-chelator complexes. It has a half-life 
of 160 minutes [148]. The drug could efficiently remove myocardial 
iron compared to hepatic iron [149,150]. Many groups indicated in 
their study, greater reduction in iron overload induced cardiac 
failure due to deferiprone treatment [151, 152]. In a recent study, 
sixty patients who received thrice daily oral deferiprone (total dose 
75 mg/kg/day), showed great enhancement in left-ventricular 
ejection function as compared to other 180 patients who received 
deferoxamine alone [153]. No deaths were seen in fifty-five 
thalassemia patients treated with deferiprone alone or eighteen 
patients with deferiprone-DFO combination, as compared to eleven 
cardiac arrests in DFO alone treated patients [154]. The drug has 
been found to cross blood brain barrier efficiently and is under 
phase II clinical trials for its safe and efficient use in treating 
neurodegenerative disorders such as Parkinson’s disease.  

However few case reports of deferiprone therapy indicated death 
due to fatal congestive heart failure with no other known etiology 
[155, 156]. In a recent case study of a 30-year-old thalassemia 
patient, the switching from DFO to deferiprone resulted in decrease 
in serum ferritin levels but also produced seizures after five months 
of treatment leading to permanent discontinuation of deferiprone 
treatment [157]. Therefore seizures may be one of the potential 
adverse effects of deferiprone therapy. Though the drug proved 
effective in treating iron overload of thalassemia patients [158-160], 
it also exhibited severe side effects of neutropenia and 
agranulocytosis and therefore remained as second-line defense only 
for which deferoxamine treatment remained inadequate [161-163]. 
Severe side effects such as arthropathy have been observed at dose 
of 100 mg/kg/day [164]. Deferiprone is found effective in MDS 
patients but is not licensed in USA and European countries on 
account of its associated toxicity. Usual doses of treatment are very 
high (75 mg/kg/day) as compared to DFO (20-40 mg/kg/d) and 
deferasirox (20-30 mg/kg/d).  

Deferasirox (ICL670) 

Commercially called as Exjade, deferasirox is a tridentate, synthetic 
oral iron chelator prepared from salicylic acid, salicylamide and 4-
hydrazinobenzoic acid and is proposed to serve the patients who are 
either incompliant or show intolerance to DFO. It was approved by 
FDA in USA in 2005 and Europe in 2006 and is under phase II/III 
clinical trials for iron decorporation in humans [165]. Deferasirox 
binds to iron in 2:1 ratio and is lipophilic with half life of 8-12 hours 
so that it has to be administered only once in a day. An affordable 
single dose of deferasirox per day was found highly tolerable as well 
as efficient by iron-overloaded patients of sickle cell anaemia [166] 
and other iron overload disorders [167, 168]. More than 80% of 
drug is excreted from fecal route while renal excretion was only 
eight percent [169]. Deferasirox was effective in reducing serum 
ferritin level in 166 patients suffering from non-transfusion 
dependent thalassemia with only minor side effects such as nausea, 
body rashes and diarrhea [170] and increased the quality of life by 
reducing morbidity and mortality among thalassemia patients [171]. 
A study on 175 iron loaded myelodysplastic syndrome (MDS) 
patients was done with dose range 20-30 mg/kg/day, depending on 
the frequency of blood transfusions, and found that deferasirox 
showed well-defined and manageable safety profile [172]. In their 
later study and others [173-174], it was observed that one-third of 
the patient volunteers did not achieve satisfactory iron balance at 
doses ≥30  mg/kg per day. A group of workers found increase in 
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toxicity of deferasirox if dose was increased from 30 to 40 mg/kg/d 
[175]. Deaths in older patients with MDS have been reported who 
were administered higher doses of deferasirox [176]. More recently 
it is suggested that instead of a single high dose, twice-daily doses of 
deferasirox should be administered to patients with chronic iron 
overload [177].  

Several authors have reviewed the development and current status 
of oral deferasirox [178, 179]. A one-year long study in about six 
hundred thalassemia patients with iron overload, who 
contraindicated DFO treatment, was done by European Medicines 
Agency and observed encouraging results with deferasirox [180]. 
The drug was found effective in treating iron overload in patients 
suffering from MDS [181-183], β-thalassemia [184, 185], hereditary 
hemochromatosis [186], sickle cell disease [187, 188] and allogeneic 
hematopoietic cell transplantation [189]. However deferasirox was 
found inefficient in few pediatric patients who underwent frequent 
blood transfusions during and after high-dose chemotherapy with 
autologous stem cell transplantation [190]. A phase II clinical study 
on the same confirmed the poor tolerability and GI toxicity of 
deferasirox [191].  

Many workers have suggested that deferasirox will soon replace the 
conventional chelation therapy with DFO but the fact that it is 
contraindicated in patients in advanced stage of hematologic 
disorders is also unavoidable [192]. Of more importance is that 
safety data on deferasirox prescribed doses is quite limited and need 
to be worked upon extensively before it is recommended as first-line 
treatment against DFO [193].  

Hydroxyquinolines 

Hydroxyqunoline is an oral bidentate chelator that forms five-
membered ring structure with iron [194]. It is lipophilic and readily 
enters into cell membrane and BBB. VK-28 and its derivatives such 
as M-10, M-30 are hydroxyquinoline based iron chelators having 
potency similar to DFO [195]. Their ability to cross BBB has been 
used for treating neurodegenerative disorders. Hydroxyquinoline 
based antibiotic such as clioquinol (5-chloro-7-iodo-
hydroxyquinoline) chelates iron [196], though not very specifically, 
but is being explored for possible use in iron reduction in Parkinson 
disorder [197]. 

Chelator combination therapy 

Many practitioners suggest sequential or combined regimen with 
two or more chelators to effectively overcome the iron overload 
associated with many diseases instead of single drug therapy. There 
is a great deal of work on the combination therapy with deferiprone 
and DFO since 1990s based on same or different days therapy and 
many of them are under clinical trials [198-200]. A 7-15 day study 
on five transfusion-dependent patients showed that instead of 
increasing deferiprone dose from 75 mg/kg to higher values, a 
combination of subcutaneous DFO and oral deferiprone could be 
more effective with reduced toxicity [201]. Few studies have 
suggested that the combination of deferiprone and deferoxamine is 
effective if given on same day [202, 203] while others indicated dose 
dependent chelator combinations to be given on different period of 
days [204, 205]. The synergistic effect of chelator combinations is 
expected to minimize the toxicity and inconvenience associated with 
monotherapy. 

High molecular weight iron chelators 

Though DFO therapy is currently the most commonly practiced 
treatment, yet it is costly and unaffordable by a large percentage of 
patients living in under-developed and developing countries. Short 
circulation time, patient incompliance and toxicity issues associated 
with DFO treatment has led to the development of high molecular 
weight chelators. Iron binding polymers have a great potential at 
therapeutic level to bind iron irreversibly and form stable and non-
toxic complexes. The first of these attempts included inclusion of 
hydroxamic acids onto polymers to obtain a high stability constant 
for iron. Hydroxamic acids are long known for their powerful ability 
to selectively bind iron. In this regard a series of water-soluble 
acrylic polymers with hydroxamic acid bearing side chains (PHAs) 
were prepared which proved highly selective for iron with reduced 

circulation time [206]. But these polymers were non-biodegradable 
and could lead to intoxication followed by deposition. Ten years 
later Meshchanov & coworkers suggested that 30-35 hydroxamic 
acids per hundred monomer units of polymer increase the ability of 
PHAs to eliminate body iron as well as to undergo biodegradation 
[207]. To enhance patient compliance, the development of effective 
and highly selective oral chelators is must. Therefore orally active 
drugs based on chitosan [208-209] and pectin derivatives [210] 
were prepared, that got approval by FDA for iron chelation. The 
adhesive property of chitosan based microspheres functionalized 
with catechol or hydroxyl-carboxylic acid was used to prepare orally 
active and therapeutically efficient iron chelators [211]. A team of 
workers claimed to produce hydrogels based on conjugate of 
dihydroxybenzoic acid on polyamine vehicles such as 
polyacrylamide and polyvinyl alcohol that were ten times more 
effective than any of the current therapeutics [212]. Various other 
chelators such as desferrithiocin and hydroxypyridinones were also 
covalently linked to polyamine backbone such as spermine and 
showed increased permeation of the chelator into cells. Taking into 
account the selectivity and specificity of DFO for iron, the drug was 
bound to high molecular weight polymeric vehicles through its 
amino group. This approach led to the development of high 
molecular weight chelators having enhanced blood retention times 
and reduced toxicity. Dextran was proposed as a biodegradable and 
biocompatible matrix to which DFO was covalently bonded [213]. 
Hydroxyl ethyl starch-conjugated deferoxamine (HES-DFO) is 
currently under Phase Ib clinical trial (40SD02) as a novel long-
lasting formulation [214].  

CONCLUSION 

Iron overload is a common problem all over the world. Workers 
from all over the world are involved in finding the best suitable 
therapeutic agent that can treat the iron overload and its associated 
trauma. The active involvement of a number of researchers to find 
the best suitable iron overload treatment may increase the 
availability of therapeutic options for patients. A number of iron 
chelators are approved for treatment of iron overload associated to 
thalassemia, cancer, asthma etc and others are being improved to get 
the patients relieved from iron overload with reduced toxicity and 
maximum efficacy. Though a number of agents, natural or synthetic, 
are currently available or are being screened to reduce the iron 
overload, yet the development of a best ligand is challenge in the 
area of drug discovery and development. The treatment of chronic 
iron overload is challenge to the modern practitioners, which 
exposes them to great dilemma regarding management of the 
problem. 
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