BIOCHEMICAL CHARACTERIZATION AND ANTIBACTERIAL PROPERTIES OF FISH SKIN MUCUS OF FRESH WATER FISH, HYPOPHTHALMICHTHYS NOBILIS

Authors

  • Anil K. Tyor Fish and Fisheries Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra 136119
  • Sunil Kumari

Keywords:

Hypophthalmichthys nobilis, Microorganism, Fish skin mucus, Biochemical composition, Zone of inhibition, Minimum inhibitory concentration, Antibacterial activity

Abstract

Objective: The present study was undertaken to characterize the biochemical composition and antibacterial activity of skin mucus of fish Hypophthalmichthys nobilis against different human and fish pathogenic bacterial strains viz. Klebsiella pneumonia, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Staphylococcus aureus, Bacillus cereus and Aeromonas hydrophilla.

Methods: Skin mucus of fish H. nobilis was collected by skin scarping method. Antibacterial activity of mucus extract was carried out by agar well diffusion method and measured in terms of zone of inhibition(ZOI) in mm. Antibacterial activity of mucus extract was then compared with two antibiotic amikacin and chloramphenicol. Minimum inhibitory concentration (MIC) of skin mucus extract was also determined.

Results: The biochemical characterization of epidermal mucus extract revealed the presence of proteins as a major component (265±2.64 µg/ml) followed by carbohydrate content (63.66±0.88 µg/ml) and lipid content (0.0077±0.66 g/ml) respectively. Remarkable antimicrobial activity against all the selected microbial strains was observed. Zone of inhibition (ZOI) shown by crude mucus extract against all the bacterial strains was found to be significantly higher than higher than Chloramphenicol.

Conclusion: The present study opined that skin mucus of this fish can be used as potential antimicrobial components.

Keywords: Hypophthalmichthys nobilis, Microorganism, Fish skin mucus, Antibacterial activity, ZOI, MIC

Downloads

Download data is not yet available.

References

Roder BL. Clinical features of Staphylococcus aureus endocarditis. A 10-year experience in Denmark. Arch Intern Med 1999;159:462–9.

Harbottle H, Thakur S, Zhao S, White DG. Genetics of antimicrobial resistance. Anim Biotechnol 2006;17 Suppl 2:111-24.

Shoemaker NB. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteriodes of other genera in the human colon. Appl Environ Microbiol 2001;67:561-8.

Costa-Neto EM. Healing with an animal in Feira de Santana City, Bahia, Brazil. J Ethnopharmacol 1999;63:2225-30.

Schaeck M, Broeck WAD, Hermans K, Decostere A. Fish as a research tool: an alternative to in vivo experiments. ALTA 2013;41:219-29.

Wei OY, Xavier R, Marimuthu K. Screening of antibacterial activity of mucus extract of snakehead fish, Channa straitus (Bloch). Eur Rev Med Pharmacol Sci 2010;14:675-81.

Vennila R, Kumar RK, Kanchana S, Arumugam M, Vijayalakshmi S, Balasubramaniam T. Preliminary investigation on the antimicrobial and proteolytic property of the epidermal mucus secretion of marine stingrays. Asian Pac J Trop Biomed 2011;1:239-43.

Pearson J, Brownlee IA. A surface and function of mucosal surface. In: Colonization of the mucosal surface, Nataro JP (Ed.). ASM Press: Washington DC, USA; 2005.

Aggarwal SK, Banerjee TK, Mittal AK. Physiological adaptation in relation the hyperosmotic stress in the epidermis of a freshwater teleost Barbus sophor (Cypriniformes: Cyprinidae) a histochemical study. Z Mikrosk Anat Forsch 1979;93:51-64.

Hellio C, Bremer G, Pons AM, Le Gal Y, Bourgougnon N. Antibacterial, antifungal and cytotoxic activities of extracts from the fish epidermis and epidermal mucus. Int J Antimicrob Agent 2002;20:214-9.

Subramanian S, Ross NW, MacKinnon SL. Comparison of antimicrobial activity in the epidermal mucus extracts of fish. Comp Biochem Physiol Part B: Biochem Mol Biol 2008;150 Suppl 1:85-92.

Subramanian S, Ross NW, MacKinnon SL. Myxinidin, a novel antimicrobial peptide from the epidermal mucus of hagfish, Myxine glutinosa. L. J Mar Biotechnol 2009;11:748–57.

Ellis AE. The immunology of teleosts. In: Roberts RJ. Fish Pathol. 3rd edition. Elsevier, New York; 2001. p. 133-50.

Whyte SK. The innate immune response of finfish-A review of current knowledge. Fish Shell Fish Immunol 2007;23:1127-51.

Kuppulakshmi C, Prakash M, Gunasekaran G, Manimegalai G, Sarojini S. Antibacterial properties of fish mucus from Channa punctatus and Cirrhinus mrigala. Eur Rev Med Pharmacol Sci 2008;12:149-53.

Kumari U, Nigam AK, Mitial S, Mitial AK. Antibacterial properties of the skin mucus of the freshwater fishes, Rita rita and Channa punctatus. Eur Rev Med Pharmacol Sci 2011;15 Suppl 7:781-6.

Gopakumar K, Ayyappan S, Jena JK, Sahoo SK, Sarkar SK, Satapathy BB, et al. Cyprinid Fishes. National freshwater aquaculture development plan. CIFA, Bhubaneswar, India; 1999. p. 75.

Smith PK. Measurement of protein using bicinchonic acid. Anal Biochem 1985;150:76-85.

Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193:265-75.

Trevelyan WE, Forrest RS, Harrison JS. Determination of yeast carbohydrate with the anthrone reagent. Nature 1952;170:626-7.

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956;28:350-6.

Novk M. Colorimetric ultra micro method for determination of free fatty acids. J Lipid Res 1965;6:67-9.

Folch JM, Lees, Stanely GHS. A simple method for isolation and purification of total lipids from animal tissue. J Biol Chem 1957;226:497-9.

Perez C, Pauli M, Bazerque P. An antibiotic assay by agar well dilution method. Acta Biol Med Exp 1990;15:113-5.

National Committee for Clinical Laboratory Standards (NCCLS). Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically, Third edition. Approved standard. M7-A3. NCCLS: Villanova, PA, USA; 1993.

National Committee for Clinical Laboratory Standards (NCCLS). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard fifth Edition. NCCLS document M7-A5. NCCLS: Wayne, PA,USA; 2000.

Austin B, MacIntosh D. Natural antibacterial compounds on the surface of rainbow trout, Salmo gairdneri. Richardson. J Fish Dis 1988;11:275-7.

Fouz B, Devesa S, Gravningen K, Barja J, Toranzo A. Antibacterial action of the mucus of the turbot. Bull Eur Ass Fish Pathol 1990;10:56-9.

Negus VE. The function of mucus. Acta Otolaryngol 1963;56:204-14.

Black SN, Pickering AD. Changes in the concentration and histochemistry of epidermal mucus cells during the alevin and fry stages of the brown trout (Salmo trutta). J Zool Sci 1982;197:463-71.

Lebedeva NY. Skin and superficial mucus of fish. Biochemical properties and functional role. In: Saksena Ichthyol Rec Res Adv Sci Pub. New. Ham; 1999. p. 179-93.

Manivasagan P, Annamalain N, Ashok KS, Sampath KP. A study on the proteinaceous gel secretion from the skin of the catfish, Arius maculates (Thunberg, 1792). Afr J Biotechnol 2009;8:7125-9.

Dhotre MA, Bansode PD, Shembekar VS. Extraction, Biochemical characterization and antibacterial activity of fish mucus. Indian Streams Res J 2013;2 Suppl 12:1-8.

Timalata K, Marimuthu K, Vengkades R, Xavier R, Rahman MA, Sreeramanan S, et al. Elucidation of innate immune components in the epidermal mucus of different freshwater fish species. Acta Ichthyol Piscatoria 2015;45 Suppl 3:221-30.

Rao V, Marimuthu K, Kupusamy T, Rathinam X, Arasu MV, Al-Dhabi NA, et al. Defense properties in the epidermal mucus of different freshwater fish species. AACL Bioflux 2015;8 Suppl 2:184-94.

Cole AM, Weis P, Diamond J. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biochem 1997;272:12008-13.

Ebran N, Julien S, Orange N, Saglio P, Lemaitre C, Molle G. Pore-forming properties and antibacterial activity of proteins extracted from the epidermal mucus of fish. Comp Biochem Physiol 1999;122:181-9.

Subramanian S, MacKinnon S, Ross NW. A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp Biochem Physiol. Part B: Biochem Mol Biol 2007;148 Suppl 3:256-63.

Boman HG. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 1995;13:61-92.

Fernandes JMO, Molle G, Kemp GD, Smith J. Isolation and characterization of oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol 2004;28 Suppl 2:127-38.

Oren Z, Shai Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses fish Pardachius marmoratus. Eur J Biochem 1996;237:3.

Krishnamurthi E, Ranjini S, Rajagopal T, Rameshkumar G, Ponmanickam P. Bactericidal protein of skin mucus and skin extracts from freshwater fishes, Clarias batrachus and Tilapia mossambicus. Thai J Pharm Sci 2013;37:194-200.

Bragadeeswaran S, Thangaraj S. Hemolytic and antibacterial studies on skin mucus of eel fish, Anguilla linnaues 1758. Asian J Biol Sci 2011;4 Suppl 3:272-6.

Loganathan K, Arul PA, Prakah M, Senthilraja P, Gunaesekaran G. studies on the antimicrobial and hemolytic activity of the mucus of freshwater snakehead fish Channa striatus. Int J Biol Pharm Allied Sci 2013;2 Suppl 4:866-78.

Anbuchezhian R, Gobinath C, Ravichandran S. Antimicrobial peptide from the epidermal mucus of some estuarine catfishes. The World Appl Sci J 2011;12 Suppl 3:256-60.

Loganathan K, Muniyan M, Arul PA, Senthil RP, Prakash M. Studies of the role of mucus from Clarias batrachus (LINN) against selected microbes. Int J Pharm 2011;2 Suppl 3:202-6.

Uthyakumar V, Ramasubramanian V, Senthilkumar D, Priyadarisini BV, Harikrishan A. Biochemical characterization, antimicrobial and hemolytic studies on skin mucus of freshwater spiny eel, Mastacembelus armatus. Asian J Trop Biomed 2012;2:S863-S869.

Haniffa MA, Viswanathan S, Jancy D, Poomari K, Manikandan S. Antibacterial studies of fish mucus from two marketed air-breathing fishes–Channa striatus and Heteropneustes fossilis. Int Res J Microbiol 2014;5 Suppl 2:22-7.

Balasubramanian S, Baby Rani P, Prakash AA, Prakash M. Antimicrobial properties of skin mucus from four freshwater cultivable Fishes (Catla catla, Hypophthalmichthys molitrix, Labeo rohita and Ctenopharyngodon idella). Afr J Microbiol Res 2012;6 Suppl 24:5110-20.

Takahashi Y, Kajiwaki T, Itami T, Okarnoto T. Enzymatic properties of the bacteriolytic substances in the skin mucus of yellow tail. Nippon Suisan Gakkaishi 1987;53:425-31.

Aranishi F. The high sensitivity of skin cathepsins L and B of European eel (Anguilla anguilla) to thermal stress. Aquaculture 2000;182:209-13.

Smith VJ, Fernandes JMO, Jone SJ, Kemp GD, Tatner MF. Antibacterial protein in rainbow trout, Oncorhynchus mykiss. Fish Shellfish Immunol 2000;10:243-60.

Andreu D, Rivas L. Animal antimicrobial peptides: an overview. Biopolymers 1999;47:415-33.

Published

01-06-2016

How to Cite

Tyor, A. K., and S. Kumari. “BIOCHEMICAL CHARACTERIZATION AND ANTIBACTERIAL PROPERTIES OF FISH SKIN MUCUS OF FRESH WATER FISH, HYPOPHTHALMICHTHYS NOBILIS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 6, June 2016, pp. 132-6, https://journals.innovareacademics.in/index.php/ijpps/article/view/11105.

Issue

Section

Original Article(s)