COFORMER SELECTION: AN IMPORTANT TOOL IN COCRYSTAL FORMATION

Authors

  • Sulbha R. Fukte Department of pharmaceutics, NDMVPS College of Pharmacy, Nashik, India
  • Milind P. Wagh Department of QAT, NDMVPS College of Pharmacy, Nashik, India.
  • Shilpi Rawat Department of QAT, NDMVPS College of Pharmacy, Nashik, India

Keywords:

Cocrystal, Coformer, Supramolecular synthon, Cambridge structural database, Hansen solubility parameter

Abstract

Cocrystals are multicomponent system in which one component is Active Pharmaceutical Ingredient (API) and another is called coformer. So coformer selection is one of the main challenge in cocrystal development which is compatible with API. A general approach to coformer selection is by tactless†cocrystal screening, whereby a predetermined library of pharmaceutically acceptable/approved compounds is used to attempt cocrystallization. In cocrystal development one of the approach of coformer selection is based on trial and error. Other approaches are supramolecular synthon approach which utilizes Cambridge Structural Database (CSD) to effectively prioritize coformers for crystal form screening, Hansen solubility parameter and knowledge of hydrogen bonding between coformer and API. In this review, all the parameters are explain and correlate with each other and with cocrystal formation

Downloads

Download data is not yet available.

References

Mohammad AM, Amjad A, Velaga SP. Hansen solubility parameter as a tool to predict the cocrystal formation.Int. J Pharm 2011;407:63-71.

Ning Qiao, Mingzhong Li, Walkiria Schlindwein, Nazneen Malek, Angela Davies, Gary Trappittl. Pharmaceutical cocrystals:An overview.Int. J Pharm 2011;419:1-11.

Yadav A.V. Shete AS, Dabke AP, Kulkarni PV, Sakhare SS.Co-crystal:A Novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm Sci.2009;71(4):359-70.

Cheney ML, Weyna DR, Ning Shan, Mazen Hanna, Lukasz Wajtos. Coformer selection in pharmaceutical cocrystal development a case study of meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. J pharm sci 2011;100(6):2172-81.

Laszlo Fabian. Combridge structural database analysis of molecular complementarity in cocrystals. Cryst. Growth Des.2009;9(3):1436-43.

Lu J, Rohani S. Preparation and characterization of theophylline– nicotinamide cocrystal. Org. Process Res. Dev 2009;13:1269–75.

Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des, 2009;9:2950–67.

Aakeroy CB, Salmon DJ. Building co-crystals with molecular sense and supramolecular sensibility. Cryst Eng Commun 2005;7:439–48.

Almarsson O, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical cocrystals represent a new path to improve medicines? Chem Commun 2004;1889–96.

Cheney ML, Shan N, Healey ER, Hanna M, Wojtas L, Zaworotko MJ, Sava V, Song S, Sanchez-Ramos JR. Effects of crystal form on solubility and pharmacokinetics:a crystal engineering case study of lamotrigine. Cryst Growth Des 2010;10:394–405.

Allen FH. The Cambridge Structural Database:a quarter of a million crystal structures and rising. Acta Crystallogr Sect B-Struct Sci. 2002;58:380–88.

Desiraju GR. Supramolecular synthons in crystal engineering—a new organic synthesis. Angew. Chem., Int. Ed. Engl 1995;34:2311–2327.

Goud BS, Reddy PK, Panneerselvam K, Desiraju GR. 1:1 Molecular Complex of 2,3,4,5,6â€Pentafluoroâ€transâ€cinnamic Acid and 4â€(N,Nâ€Dimethylamino)â€transâ€cinnamic Acid. Acta Crystallogr 1995;51:683.

Rodríguez SB, Price CP, Jayasankar A, Matzger AJ, Rodríguez HN. General principle of pharmaceutical polymorphism:A supramolecular perspective. Adv. Drug Delivery Rev. 2004;56(3):241-74.

Aakeröy CB, Desper J, Helfrich BA. Heteromeric intermolecular interactions as synthetic tool for the formation of binary cocrystal. Cryst Eng Comm 2004;6:19-24

McMahon JA, Bis JA, Vishweshwar P, Shattock TR, McLaughlin O L, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases.3.Primary Amide Supramolecular Heterosynthons and their role in the Design of Pharmaceutical Cocrystals. Z Kristallogr 2005;220, 340-50

MacGillivray L R, Atwood J L. J. Solid State Chem 2000;152-99.

Etter M C, Adsmond D A. J. Chem. Soc 1990;589.

Bhogala B R, Vishweshwar P, Nangia A.Four Fold Inclined Interpenetrated And Three Fold Parallel Interpenetrated Hydrogen Bond Networks In 1,3,5-Cyclohexane tricarboxylic Acid, Hydrates And It’s Molecular Complex With 4,4’-Bipyridine. Cryst. Growth Des 2002;2:325.

Bond A D.In situ co-crystallisation as a tool for low temperature crystal engineering. Chem. Commun 2003;250.

Hildebrand JH, Scott R. The Solubility of Nonelectrolytes. 3rd ed. Dover, New York:1964.

Hansen CM. The three-dimensional solubility parameter-key to paint component affinities:solvents, plasticizers, polymers, and resins. II. Dyes, emulsifiers, mutual solubility and compatibility, and pigments. III. Independent calculation of the parameter components. J. Paint Technol 1967;39:505–10.

Hansen C. Hansen Solubility Parameters:A User’s Handbook. CRC Press. Boca Raton, USA:2007.

Hansen CM. The three dimensional solubility parameter—key to paint component Affinities, Solvents, plasticizers polymers, and resins. J. Paint Technol 1967;39:104–17.

Krauskopf L. Prediction of plasticizer solvency using Hansen solubility parameters. J Vinyl Addit Technol 2004;5:101–06.

Greenhalgh DJ, Williams AC, Timmins P, York P. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci 1999;88:1182–1190

Hancock BC, York P, Rowe RC.The use of solubility parameters in pharmaceutical dosage form design. Int. J. Pharm1997;148:1–21.

Johnson B, Zografi G. Adhesion of hydroxypropyl cellulose films to low energy solid substrates. J Pharm Sci 1986;75:529–33.

Rowe R. Adhesion of film coatings to tablet surfaces—a theoretical approach based on solubility parameters. Int. J. Pharm 1988;41:219–22.

Subrahmanyam C, Prakash K, Rao P. Estimation of the solubility parameter of trimethoprim by current methods. Pharm Acta Helv 1996;71:175–183.

Fedors, R. A method for estimating both the solubility parameters and molar Volumes of liquids. Polym Eng Sci 1974;14:147–54.

Van Krevelen DW, Hoftyzer P. Properties of Polymers. Their Estimation and Correlation with Chemical Structure, 2nd ed. Amsterdam:Elsevier Scientific Publ;1976.

Issa N. Can the Formation of Pharmaceutical Cocrystals Be Computationally Predicted? 2. Crystal Structure Prediction. J. Chem Theory Comput 2009;5 (5):1432–48.

Sekhon BS. Pharmaceutical cocrystal-a review.ARS Pharmaceutica 2009;50:99-117.

Stahl PH, Wermuth CG. Handbook of pharmaceutical salts:properties, selection, and use. New York:Wiley-VCH;2002.374

Serajuddin ATM. Salt formation to improve drug solubility. Advanced Drug Delivery Rev 2007;59:603-16.

Morrissette S, Almarsson O, Peterson M, Remnar J. High throughput crystallisation:polymorph, salts, cocrystal and solvates of pharmaceutical solids. Adv Drug deliv Rev 2004;56:275-300.

Khan M, Enkelmann V, Brunklaus G. Crystal engineering of pharmaceutical co-crystals:application of methyl paraben as molecular hook. J Am Chem Soc 2010;132:5254–63.

Padrela L, Rodrigues MA, Velaga SP, Fernandes AC, Matos HA, Azevedo EG. Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process. J Supercrit Fluids 2010;53:156–64.

Walsh RDB, Bradner MW, Fleischman S, Morales LA, Moulton B, Rodriguez Hornedo N, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases. Chem Commun 2003;186–87.

Aakeroy CB, Fasulo M, Schultheiss N, Desper J, Moore C. Structural competition between hydrogen bonds and halogen bonds. J Am Chem Soc 2007;129:13772–73.

Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical cocrystals. J Pharm Sci 2006;95:499–516.

Hildebrand JH, Scott R. The Solubility of Nonelectrolytes. 3rd ed. Dover, New York:1964.

Greenhalgh DJ, Williams AC, Timmins P, York P. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci 1999;88:1182–90.

Hancock BC, York P, Rowe RC. The use of solubility parameters in pharmaceutical dosage form design. Int J Pharm 1997;148;1–21.

Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 1990;23:120–26.

Rowe R. Adhesion of film coatings to tablet surfaces—a theoretical approach based on solubility parameters. Int J Pharm 1988;41:219–22.

Subrahmanyam C, Prakash K, Rao P. Estimation of the solubility parameter of trimethoprim by current methods. Pharm Acta Helv 1996;71:175–83.

Fedors R. A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci 1974;14:147–54.

Desiraju G R.Supramolecular Symthons In Crystal Engineering-New Organic Synthesis. Angew Chem, Int Ed Engl 1995;34:2311–27.

Morissette S L, Almarsson O, Peterson M L, Remenar J F, Read M J, Lemmo A V, Ellis S, Cima M J, Gardner C R.High-throughput Crystallisation:Polymorphs,Salts,Cocrystal And Solvates of Pharmaceutical Solids. AdV Drug Delivery Rev 2004;56:275–300.

Allen F H, Motherwell.Application of Cambridge Structural Database in Organic Chemistry and Crystal chemistry Acta Crystallogr Sect B 2002;58:407-22.

Stephan J M. Cambridge Structural Database System-from crystallographic data to protein-ligand applications.CCDC, 12 union road,Cambridge, UK.

Published

01-07-2014

How to Cite

Fukte, S. R., M. P. Wagh, and S. Rawat. “COFORMER SELECTION: AN IMPORTANT TOOL IN COCRYSTAL FORMATION”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 6, no. 7, July 2014, pp. 9-14, https://www.innovareacademics.in/journals/index.php/ijpps/article/view/1733.

Issue

Section

Review Article(s)