• Saba Maanvizhi Assistant Professor, Faculty of Pharmacy, Sri Ramachandra University, Porur, Chennai
  • Tejaswi Boppana Faculty of Pharmacy, Sri Ramachandra University, Porur, Chennai
  • Chitra Krishnan 3Professor, Faculty of Pharmacy, Sri Ramachandra University, Porur, Chennai, India
  • Gnanamani Arumugam Senior Scientist, MicrobiologyDivision, CSIR-Central Leather Research Institute, Adyar, Chennai, India


Diabetes, Metals, Insulin-mimetic activity, Pancreatic Beta-Cell


The medicinal uses and applications of metals and metal complexes are of increasing clinical and commercial importance.More than 2 - 8% of world's population is suffering from diabetes. The correlation of diabetes and an imbalance in metal makes metal -based therapy as an attractive proposition. The development of anti-diabetic metal complexes replacing insulin injection to regulate sugar levels appears to be interesting. It has been understood that control of the glucose level in the blood plasma has been achieved by administration of vanadium and zinc in form of inorganic salts. Number of vanadium and other metal complexes has been developed and all of which have shown insulin-mimetic properties. This paper mainly focus extensive role of metal and its complexes in biological systems and its therapeutic applications.


Download data is not yet available.


Tripathi IP, Kumar MM, ArtiK, Chinmayi M, Ruchita T, Kant SL, Bihari PK. Synthesis, Characterization of Some Antidiabetic Copper Complexes with Ethylenediamine. Res J Chem Sci 2013;3(12):54-59.

Pandey G, JainGC, Mathur N. Therapeutic Potential of Metals in Managing Diabetes Mellitus:AReview. J Mol Pathophysiol. 2012;1(1):63-76.


Sakurai H.A New Concept:The Use of Vanadium Complexes in the Treatment of Diabetes Mellitus. The Chem Record 2002;2:237-48.

Hiromura M, Sakurai H. Action Mechanism of Metallo-allixinComplexes as AntidiabeticAgents. Pure Appl. Chem.2008;80(12):2727-33.

Sakurai H, Katoh A, Kiss T, Jakusch T, Hattori M. Metallo–allixinate Complexes with Anti-diabetic and Anti-metabolic Syndrome Activities.Metallomics2010;2:670–82.

Bharti SK, Singh SK. Metal Based Drugs:Current Use and Future Potential. Der Pharmacia Lettre 2009;1 (2):39-51.

Trace Elements in GlucometabolicDisorders:An update. DiabetolMetabSyndr 2010;2:70.

Pattan SR, Pawar S. B., Vetal S.S., Gharate U. D. and Bhawar S. B. The Scope of Metal Complexes in Drug Design-A Review. Indian Drugs 2012;49(11):5-12.

Thompson KH and Orvig C. Metal Complexes in Medicinal Chemistry:New Vistas and Challenges in Drug Design.Dalton Trans. 2006;761-64.

Rafique S, Idrees M,Nasim A, Akbar H, Athar A.Transition Metal Complexes as Potential Therapeutic Agents.Biotechnol.Mol.Biol.Rev. 2010;5(2):38-45.

Yoshikawa Y, Yasui H.Zinc Complexes Developed as Metallopharmaceutics for Treating Diabetes Mellitus based on the Bio-Medicinal Inorganic Chemistry.Curr. Topics Med Chem 2012;12(3):210-18.

Siva L, Senthil Kumar V. Role of Iron and Copper in Diabetics. Bulletin of Pharmaceutical and Medical Sciences 2013;1(3):210-21.

Sorenson JR. Copper Complexes offer a Physiological Approach to Treatment of Chronic Diseases. J Prog Med Chem 1989;26:437-68.

Harris ED. Basic and Clinical Aspects of Copper. Crit Rev Clin Lab Sci. 2003;40(5):547–586.

Yasumatsu N, Yoshikawa Y, Adachi Y, Sakurai H. AntidiabeticCopper (II)-picolinate:Impact of the First Transition Metal in the Metallopicolinate Complexes. Bioorg Med Chem 2007;15(14):4917-22.

Barthel A, Ostrakhovitch EA, Walter PL, Kampkötter A, Klotz LO. Stimulation of Phosphoinositide 3-Kinase/AktSignaling by Copper and Zinc Ions:Mechanisms and Consequences. Arch BiochemBiophys. 2007;463(2):175-82.

Tanaka A, Kaneto H, Miyatsuka T, Yamamoto K, Yoshiuchi K, Yamasaki Y, Shimomura I, Matsuoka TA, Matsuhisa M. Role of Copper Ion in the Pathogenesis of Type II Diabetes. Endocr J. 2009;56(5):699-706.

Balk EM, Tatsioni A, Lichtenstein AH, Lau J, Pittas AG. Effect of Chromium Supplementation on Glucose Metabolism and Lipids:A Systematic Review of Randomized Controlled Trials. Diabetes Care 2007;30(8):2154-63.

Horvath EM, Tackett L, McCarthy AM, Raman P, Brozinick JT, Elmendorf JS.AntidiabetogenicEffects of Chromium Mitigate Hyperinsulinemia-Induced Cellular Insulin Resistance Via Correction of Plasma Membrane Cholesterol Imbalance. Mol. Endocrinol. 2008;22(4):937-50.

Talba T, Shui XW, Cheng Q, Tian X. AntidiabeticEffect of Glucosaminic Acid-Cobalt (II) Chelate in Streptozotocin-Induced Diabetes in Mice. Diabetes MetabSyndr Obes.2011;4:137-40.

Yildirim O, Buyukbingol Z. Effect of Cobalt on the Oxidative Status in Heart and Aorta of Streptozotocin-Induced Diabetic Rats. Cell Biochem.Funct. 2003;21(1):27-33.

Yildirim, O. The Effect of Vitamin C and Cobalt Supplementation on Antioxidant Status in Healthy and Diabetic Rats. Afr. J. Biotech. 2009;8(19):5053-58.

Munoz MC, Barbera A, Domínguez J, Fernandez-Alvarez J, Gomis R, Guinovart JJ. Effects of Tungstate, a New Potential Oral AntidiabeticAgent in Zucker Diabetic Fatty Rats. Diabetes 2001;50 (1):131-38.

Ballester J, Muñoz MC, Domínguez J et al. Tungstate Administration Improves the Sexual and Reproductive Function in Female Rats with Streptozotocin-induced Diabetes. Hum Reprod, 2007;22(8):2128-35.

Nagareddy PR, Vasudevan H, McNeill JH. Oral Administration of Sodium Tungstate Improves Cardiac Performance in Streptozotocin-Induced Diabetic Rats. Can. J. Physiol.Pharmacol 2005;83(5):405-11.

Fernandez-Alvarez J, Barbera A, Nadal B, Barcelo-Batllori S, Piquer S, Claret M. Stable and Functional Regeneration of Pancreatic Beta-Cell Population in nSTZ-Rats Treated with Tungstate. Diabetologia 2004;47(3):470-77.

Altirriba J,Barbera A, Del Zotto H, Nadal B, Piquer S, Sánchez-Pla A, Gagliardino JJ, Gomis R. Molecular Mechanisms of Tungstate-induced Pancreatic Plasticity:ATranscriptomicsApproach. BMC Genomics 2009;10:406.

Olcott AP, Tocco G, Tian J, Zekzer D, Fukuto J, Ignarro L, Kaufman DL. A Salen-Manganese Catalytic Free Radical Scavenger Inhibits Type I Diabetes and Islet Allograft Rejection. Diabetes 2004;53(10):2574-80.

Doring, A. and Schulzke, C. Tungsten's Redox Potential is More Temperature Sensitive than that of Molybdenum.Dalton Trans. 2010;39:5623-29.

Lord SJ, Epstein NA, Paddock RL, Vogels CM, Hennigar TL, Zaworotko MJ et al.. Synthesis, Characterization and Biological Relevance of Hydroxypyrone and Hydroxypyridinone Complexes of Molybdenum. Can. J. Chem. 1999;77(7):1249-61.

MacDonald K, Bailey J, MacRory C, Friis C, Vogels CM, Broderick T, Westcott SA. A Newly Synthesised Molybdenum/Ascorbic Acid Complex Alleviates Some Effects of Cardiomyopathy in Streptozocin-Induced Diabetic Rats. Drugs R D 2006;7(1):33-42.

Soni C, Kumar P, Mehta HC,Gaidhani S, Wanjari M. Screening of antidiabetic effect of Vangabhasma (Tin ash) in alloxan induced hyperglycemic rats.Int JRes Ayurveda Pharm 2011;2(4):1225-30.

Arunvanan.M, Sasi.S.K, Mubarak.H, Kanagarajan.A. An Overview on Anti diabetic Activity of Siddha Medicinal Plants. Asian J Pharm Clin Res 2013;6(2):46-50.

PrakashYoganandam G, Gopal V, Thanka J,AavaraiKudineer-A Potent Polyherbal Siddha Formulation for Management of Diabetes Mellitus. Int. J Pharm Dev Technol 2014:4(2);98-103.

Vadivelan.R, Umasankar.P, Dipanjan.M, Dhanabal.S.P, Shanish.A, Satishkumar M.N, Elanko K. Antidiabetic Activity of MadhumegaChuranam (Siddha formulation) in AlloxanInduced Diabetic Rats. Der Pharmacia Sinica 2011;2(2):299.

Anbu N, Musthafa M D,Velpandian V. Anti-Diabetic Activity of Polyherbal Formulation AavaraiyathiChurnamin Alloxan Induced Diabetic Rats.Int.J Toxicol Pharmacol Res 2012-13;4(4):77-80.

Parthiban P, Ravikumar J, Anbu, AshwiniAnjana.Antidiabetic Activity of KovaiKizhanguChooranam in Alloxan Induced Diabetic Rats. Int. J Life Sci Pharma Res 2012;2(4):68-72



How to Cite

Maanvizhi, S., T. Boppana, C. Krishnan, and G. Arumugam. “METAL COMPLEXES IN THE MANAGEMENT OF DIABETES MELLITUS: A NEW THERAPEUTIC STRATEGY”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 6, no. 7, July 2014, pp. 40-44,



Review Article(s)