BIOTRANSFORMATION OF DEHYDROABIETIC ACID WITH MICROBIAL CELL CULTURES AND α-GLUCOSIDASE INHIBITORY ACTIVITY OF RESULTING METABOLITES

Authors

  • Muhammad Iqbal Choudhary H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
  • Muhammad Atif H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
  • Syed Adnan Ali Shah Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia, Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
  • Sadia Sultan Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia, Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
  • Saira Erum H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
  • Shamsun Nahar Khan H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
  • Atta-Ur- Rahman H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.

Keywords:

Microbial transformation, Dehydroabietic acid, Antibacterial activities, Nil

Abstract

Dehydroabietic acid (DHA, 1), a natural occurring diterpene resin acid, is an abundant resin acid in conifers, representing a natural wood protectant. The aim of this study was to use microbial cell cultures as tools for modification of 1 in order to obtain value-added functional derivatives. A scaled-up biotransformation of 1 by filamentous fungus Cunninghamella elegans, Rhizopus stolonifer, Gibberella fujikuroi, and Cephalosporium aphidicola were conducted for the first time. Three hydroxylated metabolites; 1b-hydroxydehydroabietic acid (2); 15-hydroxy dehydroabietic acid (3); and 16-hydroxy dehydroabietic acid (4). The structure of the hydroxylated metabolites were elucidated by 1-D (1H, 13C) and 2-D NMR (COSY, HMBC, HMQC, NOESY) techniques and MS analyses. Dehydroabietic acid (1) and their transformed products 2-4 exhibited a promising α-Glucosidase inhibitory activity. Compound 1 showed 38 times more active than the standard α-Glucosidase inhibitor, deoxynojirimycin. Compound 1 and its transformed metabolites 2-4 also showed significant antibacterial activities.

Downloads

Download data is not yet available.

References

Pertino MW, Verdugo V, Theoduloz C, Schmeda-Hirschmann G. Synthesis and antiproliferative activity of some novel triazole derivatives from dehydroabietic acid. J Molecules (Basel, Switzerland) 2014;19(2):2523-35.

Tamaki H. Antiulcer activity of dehydroabietic acid derivatives. J Chem Pharm Bull 1985;33:1472-87.

Sepúlveda B, Astudillo L, Rodríguez JA, Yáñez T, Theoduloz C, Schmeda-Hirschmann G. Gastroprotective and cytotoxic effect of dehydroabietic acid derivatives. J of the Italian Pharmacological Society Res 2005;52(5):429-37.

Gigante B, Silva AM, Marcelo-Curto MJ, Feio SS, Roseiro J, Reis LV. Structural effects on the bioactivity of dehydroabietic acid derivatives. J Planta Med 2002;68(8):680-4.

Tanaka R, Tokuda H, Ezaki Y. Cancer chemopreventive activity of "rosin" constituents of Pinus spez. and their derivatives in two-stage mouse skin carcinogenesis test. Int J Phytomedicine of phytotherapy 2008;15(11):985-92.

Huang X-C, Wang M, Pan Y-M, Yao G-Y, Wang H-S, Tian X-Y, et al. Synthesis and antitumor activities of novel thiourea α-aminophosphonates from dehydroabietic acid. Eur J Med Chem 2013;69:508-20.

Bhatti HN, Khera RA. Biological transformations of steroidal compounds:a review. J Steroids 2012;77(12):1267-90.

Shah SAA, Tan HL, Sultan S, Faridz MABM, Shah MABM, Nurfazilah S, et al. Microbial-catalyzed biotransformation of multifunctional triterpenoids derived from phytonutrients. Int J of Molecular Sci 2014;15(7):12027-60.

Shah SAA, Sultan S, Hassan NB, Muhammad FKB, Faridz MABM, Hussain FBM, et al. Biotransformation of 17α-ethynyl substituted steroidal drugs with microbial and plant cell cultures:a review. J Steroids 2013;78(14):1312-24.

Shah SAA, Sultan S, Zaimi M. Biotransformation of tissue-specific hormone tibolone with fungal culture Trichothecium roseum. J of Molecular Structure 2013;1042:118-22.

Shah SAA, Sultan S, Adnan HS. A whole-cell biocatalysis application of steroidal drugs. Orient J Chem 2013;29(2):389-403.

Sultan S, Ghani NA, Shah SAA, Ismail NH, Noor MZ, Naz H, et al. Microbial transformation of anthraquinones-Biosci Biotechnol Res Asia. J Bioorg Med Chem 2013;10(2):577-82.

Azam SS, Shah SAA. Reaz Uddin, Zaheer-ul-Haq. Molecular docking studies of potent inhibitors of tyrosinase and α-glucosidase. J Bioorg Med Chem Res 2012;21:1677-83.

Shah SAA, Sultan S, Adnan HS, J. Solid Phase Microbial Transformation of Cortexolone and Prolyl endopeptidase Inhibitory Activity of the Transformed Products. Int J Pharm Sci Suppl 1. 2011;3:1-6.

Choudhary MI, Shah SAA, Atta ur R, Khan S-N, Khan MTH. Alpha-glucosidase and tyrosinase inhibitors from fungal hydroxylation of tibolone and hydroxytibolones. J Steroids 2010;75(12):956-66.

Choudhary SAA, I. M. Atta-ur-Rahman. Microbial Transformation of Anabolic Steriods. J Nat Prod Res 2008;22:1289-96.

Choudhary MI, Batool I, Shah SAA, Khan SN, Atta-ur-Rahman. Microbial Hydroxylation of oleonilic acid. J Nat Prod Res 2008;22:489-94.

Choudhary MI, Basha FZ, Abbas G, Khan SN, Shah SAA. Atta-ur-Rahman, Science at the interface of chemistry and biology:Discoveries of α-glucosidase inhibitors and antiglycation agents. J Pure Appl Chem 2007;79:2263-7.

Choudhary MI, Yousuf S, Samreen, Shah SAA, Ahmed S, Atta ur R. Biotransformation of physalin H and leishmanicidal activity of its transformed products. J Chem Pharm Bull (Tokyo) 2006;54(7):927-30.

Choudhary MI, Shah SAA, Sami A, Ajaz A, Shaheen F, Atta ur R. Fungal metabolites of (E)-guggulsterone and their antibacterial and radical-scavenging activities. J Chem Biodivers 2005;2(4):516-24.

Choudhary MI, Batool I, Shah SAA, Nawaz SA, Atta ur R. Microbial hydroxylation of pregnenolone derivatives. J Chem Pharm Bull (Tokyo) 2005;53(11):1455-9.

Sultan S, Choudhary MI, Khan SN, Fatima U, Atif M, Ali RA, Eur J Med Chem 2013;62:764-70.

Choudhary MI, Shah SAA, Musharraf SG, Shaheen F, Atta Ur R. Microbial transformation of dehydroepiandrosterone. J Natural product Res 2003;17(3):215-20.

Parshikov IA, Netrusov AI, Sutherland JB. Microbial transformation of antimalarial terpenoids. J Biotechnology Adv 2012;30(6):1516-23.

Gouiric SC, Feresin GE, Tapia AA, Rossomando PC, Schmeda-Hirschmann G, Bustos DA. 1ï¢,7ï¢-Dihydroxydehydroabietic acid, a new biotransformation product of dehydroabietic acid by Aspergillus niger. World J of Microbiology Biotechnology 2004;20:281-4.

Janocha S, Zapp J, Hutter M, Kleser M, Bohlmann J, Bernhardt R. Resin acid conversion with CYP105A1:an enzyme with potential for the production of pharmaceutically relevant diterpenoids. European J of Chemical Biology 2013;14(4):467-73.

Haekkinen ST, Lackman P, Nygren H, Oksman-Caldentey K, Maaheimo H, Rischer H. Differential patterns of dehydroabietic acid biotransformation by Nicotiana tabacum and Catharanthus roseus cells. J Biotechnol 2012;157:287-94.

Choudhary MI, Sultan S, Jalil S, Anjum S, Rahman AA, Fun H-K, et al. Microbial transformation of mesterolone. J Chem Biodivers 2005;2(3):392-400.

Choudhary MI, Sultan S, Yaqoob M, Musharraf SG, Yasin A, Shaheen F, et al. Microbial transformation of cortisol and prolyl endopeptidase inhibitory activity of its transformed products. J Natural product Res 2003;17(6):389-95.

Casañola-Martín GM, Marrero-Ponce Y, Khan MTH, Ather A, Sultan S, Torrens F, et al. TOMOCOMD-CARDD descriptors-based virtual screening of tyrosinase inhibitors:evaluation of different classification model combinations using bond-based linear indices. J Bioorg Med Chem 2007;15(3):1483-503.

Choudhary MI, Sultan S, Khan MTH, Rahman A-U. Microbial transformation of 17alpha-ethynyl-and 17alpha-ethylsteroids, and tyrosinase inhibitory activity of transformed products. J Steroids 2005;70(12):798-802.

Choudhary MI, Sultan S, Khan MTH, Yasin A, Shaheen F, Atta ur R. Biotransformation of (+)-androst-4-ene-3,17-dione. J Natural Product Res 2004;18(6):529-35.

Musharraf SG, Atta Ur R, Choudhary MI, Sultan S. Microbial transformation of (+)-adrenosterone. J Natural Product Letters 2002;16(5):345-9.

Published

01-07-2014

How to Cite

Choudhary, M. I., M. Atif, S. A. A. Shah, S. Sultan, S. Erum, S. N. Khan, and A.-U.-. Rahman. “BIOTRANSFORMATION OF DEHYDROABIETIC ACID WITH MICROBIAL CELL CULTURES AND α-GLUCOSIDASE INHIBITORY ACTIVITY OF RESULTING METABOLITES”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 6, no. 7, July 2014, pp. 375-8, https://www.innovareacademics.in/journals/index.php/ijpps/article/view/2016.

Issue

Section

Original Article(s)

Most read articles by the same author(s)