PURIFICATION AND BIOCHEMICAL CHARACTERIZATION OF A T/TN SPECIFIC LECTIN FROM LEPECHINIA BULLATA SEEDS (LAMIACEAE)

Authors

  • Wilches Torres A. Protein Research Group; Chemistry Department, Universidad Nacional - Boyacá, Colombia
  • Rojas Caraballo J. Centro de Investigación en Salud para el Trópico (CIST), Facultad de Medicina, Universidad Cooperativa de Colombia, Santa Marta, Colombia
  • Sanabria E. Protein Research Group; Chemistry Department, Universidad Nacional - Bogotá, Colombia
  • Reyes MontaÑo E Protein Research Group; Chemistry Department, Universidad Nacional - Bogotá, Colombia
  • FernÁndez Alonso Jl Real Jardín Botánico CSIC, Biodiversity and Conservation Department, Plaza de Murillo 2, 28014 Madrid, España
  • Varrot A. University Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
  • Imberty A. University Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
  • Vega N. Protein Research Group; Chemistry Department, Universidad Nacional - Bogotá, Colombia

DOI:

https://doi.org/10.22159/ijpps.2017v9i11.21514

Keywords:

Lamiaceae lectin, Lepechinia bullata, Protein, Purification, TTn antigen

Abstract

Objective: This study focused on purifying and characterizing a lectin from Lepechinia bullata (L. bullata) seeds, and determining its specificity towards tumour-associated carbohydrate-antigens.

Methods: Pigments were removed by washing the seeds with NH4OH 0.1 M pH 9.4 and treating the crude extracts with Pectinex®. The purification procedure consisted of anion exchange chromatography on diethylaminoethyl (DEAE)-Sephadex followed by affinity chromatography. For the characterization, the phase was used polyacrylamide gel electrophoresis-sodium dodecyl sulphate (SDS-PAGE), isoelectric focusing, hemagglutination assays, enzyme-linked lectinosorbent assay (ELLA) and thermal shift assay (TSA).

Results: 6.2 mg of lectin were obtained from 100 g of seeds. It was able to agglutinate enzymatically treated erythrocytes with a minimal required lectin concentration of 7 μg. ml-1. Strong binding to asialo bovine submaxillary mucine (aBSM) was determined, corroborating Tn recognition.

The isoelectric focusing showed a unique band at pH 8.5. Lectin pure shown bands at 28, 48 and 93 kDa by SDS-PAGE, with an incomplete dissociation of the last species despite trying several reduction conditions. By preparative electrophoresis under different conditions, three species were observed too, in all fractions one band at 28 kDa on Tricine-PAGE in reducing and no reducing conditions were found.

Amino acid composition, carbohydrate content, thermal stability and Ca2+and Mn2+requirements were determined. N-acetylgalactosamine (GalNAc) and desialylated mucins inhibited the agglutinant activity on human cells. Fetuin inhibited hemagglutination of rabbit erythrocytes.

Conclusion: A new lectin was isolated and characterized from L. bullata seeds, it recognizes T/Tn antigen and shows some similarities with other Lamiaceae lectins.

Downloads

Download data is not yet available.

References

Rudiger H, Gabius HJ. The history of lectinology. In: Gabius HJ. editor. The Sugar Code Fundamentals of glycosciences. Weinheim, Germany: Wiley; 2009. p. 261–8.

Ghazarian H, Idoni B, Oppenheimer SB. A glycobiology review: carbohydrates, lectins, and implications in cancer therapeutics. Acta Histochem 2011;113:236–47.

Springer GF. T and Tn, general carcinoma autoantigens. Science 1984;224:1198-207.

Lisowska E. Tn antigens and their significance in oncology. Acta Biochim Pol 1995;42:11-8.

Kishikawa T, Ghazizadeh M, Sasaki Y, Springer GF. The specific role of T and Tn tumour-associated antigens in adhesion between a human breast carcinoma cell line and a normal human breast epithelial cell line. Jpn J Cancer Res 1999;90:326–32.

Ju T, Otto VI, Cummings RD. The Tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed Engl 2011;50:1770–91.

Sylvain J, Videira PA, Philippe D. Sialyl-tn in cancer: (How) did we miss the target? Biomolecules 2012;2:435–66.

Munkley J. The role of sialyl-tn in cancer. Int J Mol Sci 2016;17:275.

Rougé P, Peumans WJ, Van Damme EJM, Barre A, Singh T, Wu JH, et al. Glycotope structures and intramolecular affinity factors of plant lectins for Tn/T antigens In: Wu A. editor. The Molecular Immunology of complex carbohydrates. 3rd ed. Boston: Springer; 2011. p. 143–54.

Bird GWG, Wingham J. Haemagglutinins from Salvia. Vox Sang 1974;26:163–6.

Bird GWG, Wingham J. More Salvia agglutinins. Vox Sang 1976;30:217–9.

Bird GWG, Wingham J. Yet more Salvia agglutinins. Vox Sang 1977;32:121–2.

Kitagaki-Ogawa H, Matsumoto I, Seno N, Takahashi N, Endo S, Arata Y. Characterization of the carbohydrate moiety of Clerodendron trichotomum lectins: its structure and reactivity toward plant lectins. Eur J Biochem 1986;161:779–85.

Piller V, Piller F, Cartron JP. Isolation and characterization of an N-acetylgalactosamine specific lectin from Salvia sclarea seeds. J Biol Chem 1986;261:14069–75.

Lis H, Latter H, Adar R, Sharon N. Isolation of two blood type A and N specific isolectins from Moluccella laevis seeds. FEBS Lett 1988;233:191–5.

Medeiros A, Bianchi S, Calvete JJ, Balter H, Bay S, Robles A, et al. Biochemical and functional characterization of the Tn-specific lectin from Salvia sclarea seeds. Eur J Biochem 2000;267:1434–40.

Wang W, Peumans WJ, Rougé P, Rossi C, Proost P, Chen J, et al. Leaves of the Lamiaceae species Glechoma hederacea (ground ivy) contain a lectin that is structurally and evolutionary related to the legume lectins. Plant J 2003;33:239–304.

Fernández -Alonso JL, Vega N, Filgueira JJ, Pérez G. Lectin prospecting in Colombian Labiatae. A systematic-ecological approach. Biochem Syst Ecol 2003;31:617–33.

Pérez G, Vega N, Fernández-Alonso JL. Prospeccion de lectinas en especies de labiadas colombianas. Un enfoque sistematico-ecologico-II. Caldasia 2006;28:179–95.

Fernández -Alonso JL, Vega N, Pérez G. Lectin prospecting in colombian Labiatae. A systematic ecological approach-III. Mainily exotic species (cultivated or naturalised). Caldasia 2009;31:227–45.

Fernández-Alonso JL, Rivera-Diaz O. Las Labiadas. In: Garcia N, Galeano G. editors. Libro Rojo de Plantas de Colombia Volumen 3 Serie Libros Rojos de Especies Amenazadas de Colombia. Bogota, Colombia: Instituto Alexander von Humboldt-Instituto de Ciencias Naturales de la Universidad Nacional de Colombia-Ministerio de Ambiente, Vivienda y Desarrollo Territorial; 2006. p. 385–582.

Pérez G, Vega N. Lamiaceae lectins. Funct Plant Sci Biotechnol 2007;1:288–99.

Filgueira-Duarte JJ, Pérez G. Producción de lectinas Tn-específicas obtenidas de Salvia palifolia y Hyptis mutabilis por variación somaclonal celular. Rev Fac Ciencias Basicas Univ Mil Nueva Granada 2013;9:134–41.

Vega N. Caracterizacion bioquimica, funcional y biologica de la lectina de Salvia bogotensis y evaluación de su aplicación para la detección del antigeno Tn. Universidad Nacional de Colombia; 2004.

Vega N, Pérez G. Isolation and characterisation of a Salvia bogotensis seed lectin specific for the Tn antigen. Phytochemistry 2006;67:347–55.

Alperin DM, Latter H, Lis H, Sharon N. Isolation by affinity chromatography and gel filtration in 8 M-urea, of an active subunit from the anti-(blood-group A+N)-specific lectin of Moluccella laevis. Biochem J 1992;285:1–4.

Lis H, Sharon N. Moluccella laevis lectin-an unusual protein with a unique specificity. Trends Glycosci Glycotechnol 1994;6:65–74.

Tollefsen SE, Kornfeld R. The B4 lectin from Vicia villosa seeds interacts with N-Acetylgalactosamine residues α-linked to serine or threonine residues in cell surface glycoproteins. J Biol Chem 1983;258:5172–6.

Pérez G, Hernandez M, Mora E. Isolation and characterization of a lectin from the seeds of Dioclea lehmanni. Phytochemistry 1990;29:1745–9.

Pérez G. Isolation and characterization of a lectin from the seeds of Erythrina edulis. Phytochemistry 1984;23:1229–32.

Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem 1985;150:76–85.

Almanza AM. Purificación y caracterización parcial de la lectina presente en las semillas de Galactia lindenii. Universidad Nacional de Colombia; 1999.

Van Driessche E, Beeckmans S, Dejaegere R, Kanarek L. Thiourea: the antioxidant of choice for the purification of proteins from phenol-rich plant tissues. Anal Biochem 1984;141:184–8.

Hermanson GT, Mallia AK, Smith PK. Immobilized affinity ligand techniques. 1st ed. San Diego: Academic Press; 1992.

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophageâ€T4. Nature 1970;227:680–5.

Schägger H, von Jagow G. Tricine-sodium dodecyl sulphate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 1987;166:368–79.

Sánchez M. Estandarización de las condiciones de separación de las subunidades que constituyen las lectinas presentes en las semillas de Salvia bogotensis. Universidad Nacional de Colombia; 2003.

Duk M, Lisowska E, Wu JH, Wu AM. The biotin/avidin-mediated microtiter plate lectin assay with the use of chemically modified glycoprotein ligand. Anal Biochem 1994;221:266–72.

Vega N. Detección, purificación y caracterización parcial de la lectina presente en las semillas del genero Salvia. Universidad Nacional de Colombia; 1997.

Hirohashi S, Clausen H, Yamada T, Shimosato Y, Hakomori S. Blood group A cross-reacting epitope defined by monoclonal antibodies NCC-LU-35 and-81 expressed in cancer of blood group O or B individuals: its identification as Tn antigen. Proc Natl Acad Sci U S A 1985;82:7039–43.

O´Donoghue M, Allard P, Ferlinz A, Verheyde J, Warrington K, Nhiri N, et al. Protein thermal shift assay using applied biosystems rel time PCR systems. In: Life Technologies Corporation; 2009.

Bollag D, Edelstein S. Isoelectric focusing (IFC). In: Protein Methods. 4th ed. New York: Wiley-Liss; 1991. p. 162–74.

Wu AM, Duk M, Lin M, Broadberry RE, Lisowska E. Identification of variant glycophorins of human red cells by lectinoblotting: application to the MiIII variant that is relatively frequent in the taiwanese population. Transfusion 1995;35:571–6.

Walker KW, Llull R, Balkian GK, Ko SH, Flores KM, Ramsamooj R, et al. Rapid and sensitive cellular enzyme-linked immuno-absorbent assay (CELISA) for the detection and quantitation of antibodies against cell surface determinants. J Immunol Methods 1992;154:121–30.

Acosta C, Carpio C, Vilcacundo R, Carrillo W. Identification of proteins isolated from amaranth (Amaranthus caudatus) by sodium dodecyl sulphate-polyacrylamide gel electrophoresis with water and NaCl 0.1 M solvents. Asian J Pharm Clin Res 2016;9:9–12.

Poveda T, Vilcacundo R, Carpio C, Carrillo W. Analysis of sesame proteins isolate (Sesamum Indicum L) with water and salt treatment. Asian J Pharm Clin Res 2016;9:1–4.

Bisht A, Thapliyal M, Singh A. Screening and isolation of antibacterial proteins/peptides from seeds of millets. Int J Curr Pharm Rev Res 2016;8:96–9.

Ryle BYAP, Sanger F. Disulphide interchange reactions. Biochem J Aug 1955;60:535–40.

Ryle AP, Sanger F, Smith LF, Kitai R. The disulfide bonds of insulin. Biochem J 1955;60:541–56.

Spackman DH, Stein WH, Moore S. The disulphide bonds of ribonuclease. J Biol Chem 1960;235:648–59.

Goldenberg DP. Native and non-native intermediates in the BPTI folding pathway. Trends Biochem Sci 1992;17:257–61.

Qin M, Wang W, Thirumalai D. Protein folding guides disulfide bond formation. Proc Natl Acad Sci 2015;112:11241–6.

Havea P, Carr AJ, Creamer LK. The roles of disulphide and non-covalent bonding in the functional properties of heat-induced whey protein gels. J Dairy Res 2004;71:330–9.

Considine T, Patel HA, Singh H, Creamer LK. Influence of binding of sodium dodecyl sulfate, all-trans-retinol, palmitate, and 8-anilino-1-naphthalenesulfonate on the heat-induced unfolding and aggregation of α-lactoglobulin B. Food Chem 2005;53:3197–205.

Wenping H, Limin H, Zhezhi W. Molecular cloning and expression of a novel gene related to legume lectin from Salvia miltiorrhiza Bunge. Afr J Biotechnol 2015;14:2234–43.

Baenziger JU, Fiete D. Structure of the complex oligosaccharides of fetuin. J Biol Chem 1979;254:789–95.

Terra VS, Homer KA, Rao SG, Andrew PW, Yesilkaya H. Characterization of novel B-galactosidase activity that contributes to glycoprotein degradation and virulence in Streptococcus pneumoniae. Infect Immun 2010;78:348–57.

Pérez G. Purification and characterization of a lectin from the seeds of Erythrina costaricensis. Int J Biochem Cell Biol 1995;27:857–63.

Wah DA, Romero A, Gallego del Sol F, Cavada BS, Ramos MV, Grangeiro TB, et al. Crystal structure of native and Cd/Cd-substituted Dioclea guianensis seed lectin. A novel manganese-binding site and structural basis of dimer-tetramer association. J Mol Biol 2001;310:885–94.

Hardman KD, Ainsworth CF. Structure of concanavalin A at 2.4-Ang resolution. Biochemistry 1972;11:4910–9.

Osinaga E, Pancino G, Porchet N, Berois N, De Cremoux P, Mistro D, et al. Analysis of a heterogeneous group of human breast carcinoma-associated glycoproteins bearing the Tn determinant. Breast Cancer Res Treat 1994;32:139–52.

Vega N, Murcia H, Pérez G. Characterization of Salvia bogotensis anti-lectin IGYs and their application in immunochemical studies involving Tn detection. Rev Colomb Quimica 2009;38:363–77.

Published

01-11-2017

How to Cite

A., W. T., R. C. J., S. E., R. M. E, F. A. Jl, V. A., I. A., and V. N. “PURIFICATION AND BIOCHEMICAL CHARACTERIZATION OF A T/TN SPECIFIC LECTIN FROM LEPECHINIA BULLATA SEEDS (LAMIACEAE)”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 9, no. 10, Nov. 2017, pp. 165-74, doi:10.22159/ijpps.2017v9i11.21514.

Issue

Section

Original Article(s)