• Meenu Singh Assistant Professor, Department of Pharmacology, PES College of Pharmacy, 50 Feet road, Hanumanthanagar, Bangalore 560050, Karnataka, India
  • Sayanti Sau P. G. Scholar, Department of Pharmacology, PES College of Pharmacy, 50 Feet road, Hanumanthanagar, Bangalore 560050, Karnataka, India
  • Mayank Bhatt P. G. Scholar, Department of Pharmacology, PES College of Pharmacy, 50 Feet road, Hanumanthanagar, Bangalore 560050, Karnataka, India
  • Pragzna Y. P. G. Scholar, Department of Pharmacology, CMR College of Pharmacy, Kandlakoya (V), Medchal Road, Hyderabad 501401, Andhra Pradesh, India
  • Dharmadev Bommi P. G. Scholar, Department of Pharmacology, CMR College of Pharmacy, Kandlakoya (V), Medchal Road, Hyderabad 501401, Andhra Pradesh, India


Dopaminergic system, Mesopontine cholinergic system, Striatum, Cholinergic interneurons


The dopaminergic neurons and cholinergic interneurons of the striatum play key roles in motivational and sensorimotor processing by the basal ganglia. The striatal dopaminergic transmission in the forebrain is modulated by the excitatory cholinergic projections from the pedunculopontine and the laterodorsal tegmental nuclei of the hind brain by activating nicotinic and muscarinic acetylcholine receptors within the substantia nigra and ventral tegmental area. Furthermore, acetylcholine-containing interneurons in the striatum also constitute an important neural substrate for modulating dopamine activity. The striatal muscarinic acetylcholine receptors, by inhibiting acetylcholine release from cholinergic interneurons and thus modifying nicotinic acetylcholine receptor activity, offer variable control of dopamine release probability. In addition, it appears that the striatal influence of dopamine and acetylcholine cannot be fully appreciated without an understanding of their reciprocal interactions. Impairments or abnormality in these reciprocating interactions is often manifested in the form of various neuropsychiatric disorders and require extensive research to establish the optimized drug therapy. Hence the present review will serve as an aid to study the anatomical and physiological aspects of dopamine modulation as influenced by acetylcholine in striatum.


Download data is not yet available.

Author Biographies

Meenu Singh, Assistant Professor, Department of Pharmacology, PES College of Pharmacy, 50 Feet road, Hanumanthanagar, Bangalore 560050, Karnataka, India


Sayanti Sau, P. G. Scholar, Department of Pharmacology, PES College of Pharmacy, 50 Feet road, Hanumanthanagar, Bangalore 560050, Karnataka, India


Mayank Bhatt, P. G. Scholar, Department of Pharmacology, PES College of Pharmacy, 50 Feet road, Hanumanthanagar, Bangalore 560050, Karnataka, India


Dharmadev Bommi, P. G. Scholar, Department of Pharmacology, CMR College of Pharmacy, Kandlakoya (V), Medchal Road, Hyderabad 501401, Andhra Pradesh, India



Woolf NJ, Butcher LL. Cholinergic systems in the rat brain: III Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull 1986;16:603-37.

Robbert H, Ted A, Eddy A. The cholinergic system and neostriatal memory functions. Behav Brain Res 2011;2:412-23.

Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 1995;18:527-35.

Haber SN, Fudge JL, McFarland N. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 2000;20:2369-82.

Kita H. Globus pallidus external segment. Prog Brain Res 2007;160:111-33.

Nambu A. Globus pallidus internal segment. Prog Brain Res 2007;160:135-50.

Pennartz CM, Groenewegen HJ, Lopes da Silva FH. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 1994;42:719-61.

Heimer L. Basal forebrain in the context of schizophrenia. Brain Res Rev 2000;31:205-35.

Sarter M, Bruno JP. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neurosci 2000;95:933-52.

Mogenson GJ, Jones DL, Yim CY. From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 1980;14:69-97.

Descarries L, Watkins KC, Garcia S, Bosler O, Doucet G. Dual character, asynaptic and synaptic, of the dopamine innervation in adult rat neostriatum: a quantitative autoradiographic and immunocytochemical analysis. J Comp Neurol 1996;375:167-86.

Arbuthnott GW, Wickens J. Space, time and dopamine. Trends Neurosci 2007;30:62-9.

Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM. The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci 1996;16:436-47.

Nirenberg MJ, Chan J, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM. Immunogold localization of the dopamine transporter: an ultrastructural study of the rat ventral tegmental area. J Neurosci 1997;17:5255-62.

Pickel VM. Extrasynaptic distribution of monoamine transporters and receptors. Prog Brain Res 2000;125:267-76.

Agnati LF, Fuxe K, Bjelke B. Volume Transmission in the Brain. Am Sci 1992;80:362-73.

Garris PA, Ciolkowski EL, Pastore P, Wightman RM. Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 1994;14:6084-93.

Gonon F. Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J Neurosci 1997;17:5972-8.

Cragg SJ. Rice ME. Dancing past the DAT at a DA synapse. Trends Neurosci 2004;27:270-7.

Descarries L, Gisiger V, Steriade M. Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 1997;53:603-25.

Satoh K, Staines WA, Atmadja S, Fibiger HC. Ultrastructural observations of the cholinergic neuron in the rat striatum as identified by acetylcholinesterase pharmacohisto chemistry. J Neurosci 1983;10:1121-36.

Leontovich TA. Fine structure of subcortical ganglia. Z Neuropat Psikh 1954;54:168-78.

DiFiglia M, Pasik P, Pasik T. A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res 1976;114:245-56.

Grofova I. Types of striato-nigral neurones labeled by retrograde transport of horeseradish peroxidase. Appl Neurophysiol 1979;42:25-8.

Contant C, Umbriaco D, Garcia S, Watkins KC, Descarries L. Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum. Neurosci 1996;71:937-47.

Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G. Acetylcholine-mediated modulation of striatal function. Trends Neurosci 2000;23:120-6.

Oorschot DE. Total number of rat striatal large interneurons and thalamic parafascicular neurons: a stereological study. Int Basal Ganglia Soc 1998;6:66.

Oorschot DE. Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J Comp Neurol 1996;366:580-99.

Descarries L, Mechawar N. Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog Brain Res 2000;125:27-47.

Bennett BD, Wilson CJ. Spontaneous activity of neostriatal cholinergic interneurons-in vitro. J Neurosci 1999;19:5586-96.

Zhou FM, Liang Y, Dani JA. Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 2001;4:1224-9.

Zhou FM, Wilson C, Dani JA. Muscarinic and nicotinic cholinergic mechanisms in the mesostriatal dopamine systems. Neurosci 2003;9:23-36.

Schultz W. Getting formal with dopamine and reward. Neuron 2002;36:241-63.

Berridge KC, Robinson TE. Parsing reward. Trends Neurosci 2003;26:507-13.

Centonze D, Gubellini P, Pisani A, Bernardi G, Calabresi P. Dopamine, acetylcholine and nitric oxide systems interact to induce corticostriatal synaptic plasticity. Rev Neurosci 2003;14:207-16.

Wickens JR, Reynolds JN, Hyland BI. Neural mechanisms of reward related motor learning. Curr Opin Neurobiol 2003;13:685-90.

Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci 2004;5:483-94.

Morris G, Arkadir D, Nevet A, Vaadia E, Bergman H. Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 2004;43:133-43.

Joshua M, Adler A, Mitelman R, Vaadia E, Bergman H. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J Neurosci 2008;28:11673-84.

Koos T, Tepper JM. Dual cholinergic control of fast spiking interneurons in the neostriatum. J Neurosci 2002;22:529-35.

Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev 1998;78:189-225.

Boyson SJ, McGonigle P, Molinoff PB. Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain. J Neurosci 1986;6:3177-88.

Richfield EK, Penney JB, Young AB. Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neurosci 1989;30:767-77.

Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, et al. Localization of D1 and D2 dopamine receptors in brain with subtype specific antibodies. Proc Natl Acad Sci 1993;90:8861-65.

Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, et al. D1 and D2 dopamine receptor regulated gene expression of striatonigral and striatopallidal neurons. Sci 1990;250:1429-32.

Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R. Goldman RPS. Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 1995;15:7821-36.

Wong AC, Shetreat ME, Clarke JO, Rayport S. D1-and D2-like dopamine receptors are co-localized on the presynaptic varicosities of striatal and nucleus accumbens neurons in vitro. Neurosci 1999;89:221-33.

Aizman O, Brismar H, Uhlen P, Zettergren E, Levey AI, Forssberg H, et al. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat Neurosci 2000;3:226-30.

Nicola SM, Surmeier J, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 2000;23:185-215.

Hernandez-Lopez S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, et al. D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci 2000;20:8987-95.

West AR, Grace AA. Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in-vivo intracellular recordings and reverse microdialysis. J Neurosci 2002;22:294-304.

Yan Z, Song WJ, Surmeier DJ. D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. J Neurophysiol 1997;77:1003-15.

Damsma G, Tham CS, Robertson GS, Fibiger HC. Dopamine D1 receptor stimulation increases striatal acetylcholine release in the rat. Eur J Pharmacol 1990;186:335-8.

Imperato A, Obinu MC, Casu MA, Mascia MS, Dazzi L, Gessa GL. Evidence that neuroleptics increase striatal acetylcholine release through stimulation of dopamine D1 receptors. J Pharmacol Exp Ther 1993;266:557-62.

DeBoer P, Abercrombie ED. Physiological release of striatal acetylcholine in vivo: modulation by D1 and D2 dopamine receptor subtypes. J Pharmacol Exp Ther 1996;277:775-83.

Aosaki T, Kiuchi K, Kawaguchi Y. Dopamine D1-like receptor activation excites rat striatal large aspiny neurons in vitro. J Neurosci 1998;18:5180-90.

Pisani A, Bonsi P, Centonze D, Calabresi P, Bernardi G. Activation of D2-like dopamine receptors reduces synaptic inputs to striatal cholinergic interneurons. J Neurosci 2000;20:1-6.

Zhou FM, Wilson CJ, Dani JA. Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol 2002;53:590-605.

Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, et al. Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 1989;284:314-35.

Colquhoun LM, Patrick JW. Pharmacology of neuronal nicotinic acetylcholine receptor subtypes. Adv Pharmacol 1997;39:191-220.

Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW. Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 1993;13:596-604.

Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, et al. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 1998;391:173-7.

Jones IW, Bolam JP, Wonnacott S. Presynaptic localization of the nicotinic acetylcholine receptor β2 sub unit immunoreactivity in rat nigrostriatal dopaminergic neurons. J Comp Neurol2001;439:235-47.

Klink R, de Kerchove d’Exaerde A, Zoli M, Changeux JP. Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci2001;21:1452-63.

Pidoplichko VI, DeBiasi M, Williams JT, Dani JA. Nicotine activates and desensitizes midbrain dopamine neurons. Nature 1997;390:401-4.

Dani JA, De Biasi M. Cellular mechanisms of nicotine addiction. PharmacolBiochem Behav2001;70:439-46.

Schwartz RD, Lehmann J, Kellar KJ. Presynaptic nicotinic cholinergic receptors labeled by [3H]acetylcholine on catecholamine and serotonin axons in brain. J Neurochem1984;42:1495-8.

Hill JA, Jr Zoli M, Bourgeois JP, Changeux JP. Immunocytochemical localization of a neuronal nicotinic receptor: the beta 2-subunit. J Neurosci1993;13:1551-68.

Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci1997;20:92-98.

Zhang W, Basile AS, Gomeza J, Volpicelli LA, Levey AI, Wess J. Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci2002a; 22:1709-17.

Weiner DM, Levey AI, Brann MR. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci1990;87:7050-4.

Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci1991;11:3218-26.

Santiago MP, Potter LT. Biotinylated m4-toxin demonstrates more M4 muscarinic receptor protein on direct than indirect striatal projection neurons. Brain Res 2001;894:12-20.

Yan Z, Flores-Hernandez J, Surmeier DJ. Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons. Neurosci 2001;103:1017-24.

Shen W, Hamilton SE, Nathanson NM, Surmeier DJ. Cholinergic suppression of KCNQ channel currents enhances excitability of striatal medium spiny neurons. J Neurosci 2005;25:7449-58.

Wang Z, Kai L, Day M, Ronesi J, Yin HH, Ding J. Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 2006;50:443-52.

Yan Z, Surmeier DJ. Muscarinic (m2/m4) receptors reduce N-and P-type Ca2+ currents in rat neostriatal cholinergic interneurons through a fast, membrane-delimited, G-protein pathway. J Neurosci1996;16:2592-604.

Alcantara AA, Mrzljak L, Jakab RL, Levey AI, Hersch SM, Goldman-RakicPS. Muscarinic m1 and m2 receptor proteins in local circuit and projection neurons of the primate striatum: anatomical evidence for cholinergic modulation of glutamatergic pre-fronto-striatal pathways. J Comp Neurol 2001;434:445-60.

Bernard V, Laribi O, Levey AI, Bloch B. Subcellular redistribution of m2 muscarinic acetylcholine receptors in striatal interneurons in vivo after acute cholinergic stimulation. J Neurosci 1998;18:10207-18.

Ding J, Guzman JN, Tkatch T, Chen S, Goldberg JA, Ebert PJ. RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat Neurosci 2006;9:832-42.

Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 1996;50:381-425.

Lester DB, Rogers TD, Blaha CD. Acetylcholine–Dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 2001;00:1-26.

Fallon GH, Moore RY. Catecholamine innervation of the basal forebrain IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 1978;180:545-80.

Le Moal M, Simon H. Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 1991;71:155-234.

Blaha CD, Phillips AG. Application of in vivo electrochemistry to the measurement of changes in dopamine release during intracranial self-stimulation. J Neurosci Meth 1990;34:125-33.

Wise RA, Rompre PP. Brain dopamine and reward. Annu Rev Psychol 1989;40:191-225.

Albanese A, Minciacchi D. Organization of the ascending projections from the ventral tegmental area: a multiple fluorescent retrograde tracer study in the rat. J Comp Neurol 1983;216:406-20.

Bjorklund A, Lindvall O. Dopamine-containing systems in the CNS. In: Bjorklund, A, Hokfelt, T. Classical transmitters inthe CNS. Handbook of chemical neuroanatomy. 2nd ed. Amsterdam: Elsevier Press; 1984. p. 55-122.

Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 2005;8:1481-9.

Ungerstedt U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 1971;367:1-48.

Routtenberg A, Malsbury C. Brainstem pathways of reward. J Comp Physiol Psychol 1969;68:22-30.

Wang HL, Morales M. The corticotropin releasing factor binding protein (CRF-BP) within the ventral tegmental area is expressed in a subset of dopaminergic neurons. J Comp Neurol 2008;509:302-18.

Gerfen CR, Baimbridge KG, Miller JJ. The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci 1985;82:8780-4.

Grace AA, Onn SP. Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci 1989;9:3463-81.

Liang CL, Sinton CM, Sonsalla PK, German DC. Midbrain dopaminergic neurons in the mouse that contain calbindin-D28k exhibit reduced vulnerability to MPTP-induced neurodegeneration. Neurodegeneration 1996;5:313-8.

Brown MT, Henny P, Bolam JP, Magill PJ. Activity of neurochemically heterogeneous dopaminergic neurons in the substantia nigra during spontaneous and driven changes in brain state. J Neurosci 2009;29:2915-25.

Mantz J, Thierry AM, Glowinski J. Effect of noxious tail pinch on the discharge rate of mesocortical and mesolimbic dopamine neurons: selective activation of the mesocortical system. Brain Res 1989;476:377-81.

Margolis EB, Lock H, Hjelmstad GO, Fields HL. The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 2006;577:907-24.

Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 2008;57:760-73.

Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol 1998;80:1-27.

Rosin DL, Weston MC, Sevigny CP, Stornetta RL, Guyenet PG. Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2. J Comp Neurol 2003;465:593-603.

Georges F, Aston-Jones G. Activation of ventral tegmental area cells by the bed nucleus of the stria terminalis: a novel excitatory amino acid input to midbrain dopamine neurons. J Neurosci 2002;22:5173-87.

Geisler S, Zahm DS. Afferents of the ventral tegmental area in the rat anatomical sub-stratum for integrative functions. J Comp Neurol 2005;490:270-94.

Grenhoff J, Nisell M, Ferre S, Aston-Jones G, Svensson TH. Noradrenergic modulation of midbrain dopamine cell firing elicited by stimulation of the locus coeruleus in the rat. J Neural Transm 1993;93:11-25.

Koob GF. Neural mechanisms of drug reinforcement. Ann NY Acad Sci 1992b; 654:171-91.

Sesack SR, Pickel VM. Ultrastructural relationship between terminals immunoreactive for enkephalin, GABA, or both neurotransmitters in the rat ventral tegmenal area. Brain Res 1995;672:261-75.

Greenwell TN, Zangen A, Martin-Schild S, Wise RA, Zadina JE. Endomorphin-1 and-2 immunoreactive cells in the hypothalamus are labeled by fluorogold injections to the ventral tegmental area. J Comp Neurol 2002;454:320-8.

Semba K, Fibiger HC. Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro-and antero-grade transport and immunohistochemical study. J Comp Neurol 1992;323:387-410.

Fadel J, Deutch AY. Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neurosci 2002;111:379-87.

Korotkova TM, Sergeeva OA, Eriksson KS, Haas HL, Brown RE. Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. Neurosci 2003;23:7-11.

Clements JR, Grant S. Glutamate-like immunoreactivity in neurons of the laterodorsal tegmental and pedunculopontine nuclei in the rat. Neurosci Lett 1990;120:70-3.

Clements JR, Toth DD, Highfield DA, Grant SJ. Glutamate-like immunoreactivity is present within cholinergic neurons of the laterodorsal and pedunculopontine nuclei. Adv Experi Med Biol 1991;295:127-42.

Futami T, Takakusaki K, Kitai ST. Glutamatergic and cholinergic inputs from the pedunculopontine tegmentqal nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci Res 1995;21:33-42.

Albe-Fessard D, Rocha-Miranda C, Oswaldo-Cruz E. Activitiesevoked in the caudate nucleus of the cat in response to various types of afferent stimulation. Electroencephalography and Clin Neurophysiol 1960;12:649-61.

Wilson CJ. The generation of natural firing patterns in neostriatal neurons. Prog Brain Res 1993;99:277-97.

Wilson CJ, Chang HT, Kitai ST. Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci 1990;10:508-19.

Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 1984a; 4:2877-90.

Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 1984b; 4:2866-76.

Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R. Firing modes of midbrain dopamine cells in the freely moving rat. Neurosci 2002;114:475-92.

Wightman RM, Zimmerman JB. Control of dopamine extracellular concentration in rat striatum by impulse flow and uptake. Brain Res Rev 1990;15:135-44.

Schultz W. Reward signalling by dopamine neurons. Neurosci 2001;7:293-302.

Schultz W, Apicella P, Ljungberg. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 1993;13:900-13.

Butcher LL, Woolf NJ. The Rat Nervous System. 3rd. ed. USA: Elsevier Press; 2003. p. 1257-68.

Woolf NJ. Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol 1991;37:475-524.

Fine A, Hoyle C, Maclean CJ, Levatte TL, Baker HF, Ridley RM. Learning impairments following injection of a selective cholinergic immunotoxin, ME20.4 IgG-saporin, into basal nucleus of Myernert in monkeys. Neurosci 1997;81:331-43.

Hasselmo ME, Anderson BP, Bower JM. Cholinergic modulation of cortical associative memory function. J Neurophysiol 1992;67:1230-46.

Bucci DJ, Holland PC, Gallgher M. Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. J Neurosci 1998;18:8038-46.

Berninato M. Spencer RF. A cholinergic projection to the rat substantia nigra from the pedunculopontine tegmental nucleus. Brain Res 1987;412:169-74.

Clarke PBS, Hommer DW, Pert A, Skirboll LH. Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: neuroanatomical and electrophysiological evidence. Neurosci 1987;23:1011-9.

Oakman SA, Faris PL, Kerr PE, Cozzari C, Hartman BK. Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 1995;15:5859-69.

Blaha CD, Allen LF, Das S, Inglis WL, Latimer MP, Vincent SR. et al. Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmental area in intact, pedunculopontine tegmental nucleus-lesioned, and laterodorsal tegmental nucleus-lesioned rats. J Neurosci 1996;16:714-22.

Winn P, Brown VJ, Inglis WL. On the relationships between the striatum and the pedunculopontine tegmental nucleus. Crit Rev Neurobiol 1997;11:241-61.

Forster GL, Blaha CD. Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat. Eur J Neurosci 2000a;17:751-62.

Forster GL, Blaha CD. Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci 2003;12:3596-604.

Jackson A, Crossman AR. Nucleus tegmenti pedunculopontinus: efferent connections with special reference to the basal ganglia, studies in the rat by anterograde horse radish peroxidase. Neurosci 1983;10:725-65.

Fujimoto K, Ikeguchi K, Yoshida M. Decrease and recovery of coline acetyltransferase activity in medial thalamus and ventral tegmental area after destruction of pedunculopontine nucleus areas in rat. Neurosci Res 1990;9:48-53.

Yeomans JS, Mathur A, Tampakeras M. Rewarding brain stimulation: role of tegmental cholinergic neurons that activate dopamine neurons. Behav Neurosci 1993;107:1077-87.

Gould E, Woolf NJ, Butcher LL. Cholinergic projections to the substantia nigra from the pedunculopontine and laterodorsal tegmental nuclei. Neurosci 1989;28:611-24.

Mena-Segovia J, Winn P, Bolam JP. Cholinergic modulation of midbrain dopaminergic systems. Brain Res Rev 2008;58:265-71.

Jerlhag E. The cholinergic-dopaminergic reward link and addictive behaviours: Pharmacology. Sweden: The Sahlgrenska Academy at Goteborg University; 2007. p. 1-128.

Luebke JI, McCarley RW, Greene RW. Inhibitory action of muscarinic agonists on neurons in the rat laterodorsal tegmental nucleus in vitro. J Neurophysiol 1993;70:2128-35.

Leonard CS, Llinas R. Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 1994;59:309-30.

Chapman CA, Yeomans JS, Blaha CD, Blackburn JR. Increased striatal dopamine efflux follows scopolamine administered systemically or to the tegmental pedunculopontine nucleus. Neuroscience1997;76:177-86.

Mathur A, Shandarin A, LaViolette SR, Parker J, Yeomans JS. Locomotion and stereotypy induced by scopolamine: contributions of muscarinic receptors near the pedunculopontine tegmental nucleus. Brain Res1997;775:144-55.

Shen KZ, Johnson SW. Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro. J Physiol2000;525:331-41.

Lodge DJ, Grace AA. The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. Proc Natl Acad Sci2006;103:5167-72.

Cooper DC. The significance of action potential bursting in the brain reward circuit. Neurochem Int2002;41:333-40.

Ishibashi M, Leonard CS, Kohlmeier KA. Nicotinic activation of laterodorsal tegmental neurons: Implications for addiction to nicotine. Neuropsychopharmacology 2009;34:2529-47.

Lacey MG, Calabresi P, North RA. Muscarine depolarizes rat substantia nigra zona compacta and ventral tegmental neurons in vitro through M1-like receptors. J Pharmacol Exp Ther1990;253:395-400.

Calabresi P, Lacey MG, North RA. Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording. Br J Pharmacol1989;98:135-40.

Gronier B, Rasmussen K. Activation of midbrain presumed dopaminergic neurons by muscarinic cholinergic receptors: an in vivo electrophysiological study in the rat. Br J Pharmacol 1998;124:455-64.

Miller AD, Blaha CD. Midbrain muscarinic receptor mechanisms underlying regulation of mesoaccumbens and nigrostriatal dopaminergic transmission in the rat. Eur J Neurosci2005;21:1837-46.

Nisell M, Nomikos GG, Svensson TH. Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse1994;16:36-44.

Ikemoto S, Panksepp J. Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. BehavNeurosci1996;110:331-45.

Havekes R, Abel T, Van der Zee EA. The cholinergic system and neostriatal memory functions. Behavioural Brain Research2011;221:412-23.

Cragg SJ. Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci2006;29:125-31.

Wess J, Eglen RM, Gautam D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov2007;6:721-33.

Lehmann J, Langer SZ. Muscarinic receptors on dopamine terminals in the cat caudate nucleus: neuromodulation of [3H]dopamine release in vitro by endogenous acetylcholine. Brain Res1982;248:61-9.

Raiteri M, Leardi R, Marchi M. Heterogeneity of presynaptic muscarinic receptors regulating neurotransmitter release in the rat brain. J Pharmacol Exp Ther1984;228:209-14.

Schoffelmeer AN, Van Vliet BJ, Wardeh G, Mulder AH. Muscarine receptor-mediated modulation of [3H] dopamine and [14C] acetylcholine release from rat neostriatal slices: selective antagonism by gallamine but not pirenzepine. Eur J Pharmacol1986;128:291-4.

Xu M, Mizobe F, Yamamoto T, Kato T. Differential effects of M1-and M2-muscarinic drugs on striatal dopamine release and metabolism in freely moving rats. Brain Res1989;495:232-42.

De Klippel N, Sarre S, Ebinger G, Michotte Y. Effect of M1-and M2-muscarinic drugs on striatal dopamine release and metabolism: an in vivo microdialysis study comparing normal and 6-hydroxydopaminelesioned rats. Brain Res1993;630:57-64.

Kudernatsch M, Sutor B. Cholinergic modulation of dopamine overflow in the rat neostriatum: a fast cyclic voltammetric study in vitro. Neurosci Lett1994;181:107-12.

Zhang W, Yamada M, Gomeza J, Basile AS, Wess J. Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J Neurosci 2002b; 22:6347-52.

Tzavara ET, Bymaster FP, Davis RJ, Wade MR, Perry KW, Wess J, et al. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J 2004;18:1410-2.

Threlfell S, Clements MA, Khodai T, Pienaar IS, Exley R, Wess J. et al. Striatal muscarinic receptors promote activity dependence of dopamine transmission via distinct receptor subtypes on cholinergic interneurons in ventral versus dorsal striatum. J Neurosci 2010;30:3398-408.

Thomson AM. Facilitation, augmentation and potentiation at central synapses. Trends Neurosci 2000a; 23:305-12.

Thomson AM. Molecular frequency filters at central synapses. Prog Neurobiol 2002b; 62:159-196.

Bernard V, Normand E, Bloch B. Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 1992;12:3591-600.

Zhang W, Basile AS, Gomeza J, Volpicelli LA, Levey AI, Wess J. Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci 2002a;22:1709-17.

Calabresi P, Centonze D, Pisani A, Sancesario G, North RA, Bernardi G. Muscarinic IPSPs in rat striatal cholinergic interneu-rones. J Physiol 1998;510:421-7.

Bonsi P, Martella G, Cuomo D, Platania P, Sciamanna G, Bernardi G, et al. Loss of muscarinic autoreceptor function impairs long-term depression but not long-term potentiation in the striatum. J Neurosci 2008;28:6258-63.

Vilaro MT, Palacios JM, Mengod G. Localization of M5 muscarinic receptor mRNAin rat brain examined by in situ hybridization histochemistry. Neurosci Lett 1990;114:154-9.

Forster GL, Yeomans JS, Takeuchi J, Blaha CD. M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J Neurosci 2002;22:1-6.

Rice ME, Cragg SJ. Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci 2004;7:583-4.

Zhang H, Sulzer D. Frequency dependent modulation of dopamine release by nicotine. Nat Neurosci 2004;7:581-2.

Schmitz Y, Schmauss C, Sulzer D. Altered dopamine release and uptake kinetics in mice lacking D2 receptors. J Neurosci 2002;22:8002-9.

Cragg SJ. Variable dopamine release probability and short-term plasticity between functional domains of the primate striatum. J Neurosci 2003;23:4378-85.

Exley R, Clements MA, Hartung H, McIntosh JM, Cragg SJ. α6-containing nicotinic acetylcholine receptors dominate the nicotine control of dopamine neurotransmission in nucleus accumbens. Neuropsychopharmacol 2008;33:2158-66.

Drenan RM, Grady SR, Steele AD, McKinney S, Patzlaff NE, McIntosh JM. Cholinergic modulation of locomotion and striatal dopamine release is mediated by α6α4* nicotinic acetylcholine receptors. J Neurosci 2010;30:9877-89.

Mirenowicz J, Schultz W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 1996;379:449-51.

Tobler PN, Dickinson A, Schultz W. Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm. J Neurosci 2003;23:10402-10.

Exley R, Maubourguet N, David V, Eddine R, Evrard A, Pons S, et al. Distinct contributions of nicotinic acetylcholine receptor subunit α4 and subunit α6 to the reinforcing effects of nicotine. Neurosci 2011;108:7577-82.



How to Cite

Singh, M., S. Sau, M. Bhatt, P. Y., and D. Bommi. “THE CONTRIBUTION OF CHOLINERGIC NEUROCIRCUITS OVER THE MODULATION OF DOPAMINE ACTIVITY IN THE STRIATUM”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 6, no. 10, Oct. 2014, pp. 72-80,



Review Article(s)