ISOLATION AND CHARACTERISATION OF RAPAMYCIN, TEMSIROLIMUS REGIO ISOMER (MONOESTER) AND TEMSIROLIMUS DIESTER IN TEMSIROLIMUS DRUG

Authors

  • Gorla S. Reddy NRI Institute of Technology, Pothavarappadu, Agiripalli Mandal, Krishna District, A. P., India, 521212
  • Chava V. N. Rao NRI Institute of Technology, Pothavarappadu, Agiripalli Mandal, Krishna District, A. P., India, 521212

DOI:

https://doi.org/10.22159/ijpps.2019v11i2.30169

Keywords:

Temsirolimus, Rapamycin, Temsirolimus regio isomer (monoester), Temsirolimus diester, Process impurities, Characterisation

Abstract

Objective: Separation and identification of the process impurities in the manufacture of temsirolimus drug viz., rapamycin, temsirolimus regioisomer (monoester) (TS monoester), and temsirolimus diester (TS diester).

Methods: During the process development of temsirolimus (TS), three process impurities-rapamycin, temsirolimus regioisomer (monoester) and temsirolimus diester-were detected by high-performance liquid chromatography (HPLC). Impurities were isolated by medium pressure liquid Chromatography (MPLC) and characterized by ESI-MS/MS, 1H NMR, FT-IR spectral data.

Results: These impurities are characterised with the help of ESI MS/MS, 1H NMR, and FT-IR data. The impurities are identified and characterised as the process impurities. One of them is the starting material i.e. rapamycin and the other two are formed during the manufacture of the drug. This method offers advantages over using photodiode-array UV detection (LC-PDA) for the determination of peak purity, viz. components with similar UV spectra can be distinguished.

Conclusion: The structures of these impurities were characterized as rapamycin, TS Monoester, and TS Diester. Out of these process impurities, rapamycin has been previously identified while the other two are previously unreported.

Downloads

Download data is not yet available.

References

Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics. C A Cancer J Clin 2009;59:225-49.

Aass A, De Mulder PH, Mickisch GH, Mulders P, van Oosterom AT, van Poppel H, et al. Randomized phase II/III trial of interferon Alfa-2a with and without 13-cis-retinoic acid in patients with progressive metastatic renal cell carcinoma: the european organisation for research and treatment of cancer genito-urinary tract cancer group (EORTC 30951). J Clin Oncol 2005;23:4172–8.

Fossa SD, Martinelli G, Otto U, Schneider G, Wander H, Oberling F, et al. Recombinant interferon alfa-2a with or without vinblastine in metastatic renal cell carcinoma: results of a European multi-center phase III study. Ann Oncol 1992;3:301–5.

Minasian LM, Motzer RJ, Gluck L, Mazumdar M, Vlamis V, Krown SE. Interferon alfa-2a in advanced renal cell carcinoma: treatment results and survival in 159 patients with long-term follow-up. J Clin Oncol 1993;11:1368–75.

Muss HB, Costanzi JJ, Leavitt R, Williams RD, Kempf RA, Pollard R, et al. Recombinant alfa interferon in renal cell carcinoma: a randomized trial of two routes of administration. J Clin Oncol 1987;5:286–91.

Negrier S, Escudier B, Lasset C, Douillard JY, Savary J, Chevreau C, et al. Recombinant human interleukin-2, recombinant human interferon alfa-2a, or both in metastatic renal-cell carcinoma. Groupe Francais d’Immunotherapie. N Engl J Med 1998;338:1272–8.

Otto U, Schneider AW, Conrad S, Klosterhalfen H. Recombinant alpha-2 or gamma interferon in the treatment of metastatic renal cell carcinoma: results of two phase II/III trials. Prog Clin Biol Res 1990;350:275–82.

Atkins MB, Sparano J, Fisher RI, Weiss GR, Margolin KA, Fink KI, et al. Randomized phase II trial of high-dose interleukin-2 either alone or in combination with interferon alfa-2b in advanced renal cell carcinoma. J Clin Oncol 1993;1:661–70.

McDermott DF, Regan MM, Clark JI, Flaherty LE, Weiss GR, Logan TF, et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol 2005;23:133–41.

Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 2007;356:115–24.

Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007;356:125–34.

Rubio Viqueira B, Hidalgo M. Targeting mTOR for cancer treatment. Curr Opin Invest Drugs 2006;7:501–12.

Del Bufalo D, Ciuffreda L, Trisciuoglio D, Desideri M, Cognetti F, Zupi G, et al. Antiangiogenic potential of the mammalian target of rapamycin inhibitor temsirolimus. Cancer Res 2006;66:5549–54.

Baldo P, Cecco S, Giacomin E, Lazzarini R, Ros B, Marastoni S. mTOR pathway and mTOR inhibitors as agents for cancer therapy. Curr Cancer Drug Targets 2008;8:647–65.

Houeiri TK, Je Y, Sonpavde G, Richards CJ, Galsky MD, Nguyen PL, et al. Incidence and risk of treatment-related mortality in cancer patients treated with the mammalian target of rapamycin inhibitors. Ann Oncol 2013;24:2092–7.

Thomas GV, Chris Tran, Mellinghoff IK, Welsbie DS, Chan E, Fueger B, et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 2006;12:122–7.

Shivani Sharma, Swapnil Goyal, Kalindi Chauhan. A review on analytical method development and validation. Int J Appl Pharm 2018;10:8-15.

Nageswara Rao CV, Gorla Sanjeeva Reddy. Orthogonal method development and validation of reverse phase ultra-performance liquid chromatographic-mass spectrometry (using PDA and QDa mass detector) for

quantification of temsirolimus in temsirolimus pharmaceutical dosage forms. J Pharm Biol Sci 2017;5:278-89.

Gorla Sanjeeva Reddy, Chava VN Rao. Separation and quantitation of rapamycin, temsirolimus regio isomer (monoester and temsirolimus diester in temsirolimus by normal phase HPLC. Saudi J Med Pharm Sci 2018;4:1064-74.

Ansermot N, Fathi M, Veuthey JL, Desmeules J, Rudaz S, Hochstrasser D. Simultaneous quantification of cyclosporine, tacrolimus, sirolimus and everolimus in whole blood by liquid chromatography-electrospray mass spectrometry. Clin Biochem 2008;41:728-35.

Hamideh Sobhania, Alireza Shafaatib, Nastaran Nafissi Varchehc, Reza Aboofazelia. A reversed phase high performance liquid chromatographic method for determination of rapamycin. Iranian J Pharm Res 2013;12(Suppl):77-81.

Xianhua Zhang, Alexander Louie, Xiaohua Li, Robert Shi, Robin K Kelley, Yong Huang. A simple and sensitive LC–MS/MS method for simultaneous determination of temsirolimus and its major metabolite in human whole blood. Chromatographia 2012;75:1405-13.

Ping Cai, Rushung Tsao, Mark E Ruppen. In vitro metabolic study of temsirolimus: preparation, isolation, and identification of the metabolites. Drug Metab Drug Dispos 2007;35:1554–63.

Allen F, Greiner R, Wishart D. Competitive fragmentation modelling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 2015;11:98-110.

Published

01-02-2019

How to Cite

Reddy, G. S., and C. V. N. Rao. “ISOLATION AND CHARACTERISATION OF RAPAMYCIN, TEMSIROLIMUS REGIO ISOMER (MONOESTER) AND TEMSIROLIMUS DIESTER IN TEMSIROLIMUS DRUG”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 11, no. 2, Feb. 2019, pp. 94-99, doi:10.22159/ijpps.2019v11i2.30169.

Issue

Section

Original Article(s)