BIPHASIC DISSOLUTION MODEL: NOVEL STRATEGY FOR DEVELOPING DISCRIMINATORY IN VIVO PREDICTIVE DISSOLUTION MODEL FOR BCS CLASS II DRUGS

Authors

  • PRASENJIT SARKAR Division of Pharmaceutics, Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata 700053, West Bengal https://orcid.org/0000-0002-6864-967X
  • SAUMYAJYOTI DAS Division of Pharmaceutics, Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata 700053, West Bengal https://orcid.org/0000-0002-2554-355X
  • SUTAPA BISWAS MAJEE Division of Pharmaceutics, Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata 700053, West Bengal https://orcid.org/0000-0001-6325-0339

DOI:

https://doi.org/10.22159/ijpps.2022v14i4.44042

Keywords:

BCS, Biorelevant dissolution medium, Biphasic dissolution model, IVIVC, In vivo predictive dissolution

Abstract

In vitro dissolution study should ideally be designed to predict in vivo performance precisely, providing key information on the bioavailability and establishing IVIVC. Development of discriminatory in vivo predictive dissolution model and the establishment of IVIVC is difficult to achieve with BCS Class 2 drugs as they exhibit variable absorption along the GI tract owing to pH-dependent solubility, especially for Classes IIa and IIb. In this context, the biphasic dissolution model is a powerful technique for investigating the interplay between dissolution, precipitation and partitioning of various poorly soluble molecules. The dissolution test medium comprising of immiscible aqueous and organic phases enables maintenance of sink conditions and easy quantification of poorly soluble drug partitioning into the organic phase. In the review, novel efforts have been taken to provide comprehensive information on challenges associated with the establishment of IVIVC for BCS Class II drugs, various approaches being adopted for developing discriminatory in vivo predictive dissolution model, significant outcomes of studies on biphasic dissolution model to predict the in vivo dissolution behaviour of BCS Class II drugs and the problems with the use of biphasic dissolution model including the status of FDA on the same.

Downloads

Download data is not yet available.

References

Davanço MG, Campos DR, Carvalho PO. In vitro-in vivo correlation in the development of oral drug formulation: A screenshot of the last two decades. Int J Pharm. 2020;580(2):119210. doi: 10.1016/j.ijpharm.2020.119210, PMID 32173499.

Pramod K, Tahir MA, Charoo NA, Ansari SH, Ali J. Pharmaceutical product development: quality by design approach. Int J Pharm Investig. 2016;6(3):129-38. doi: 10.4103/2230-973X.187350, PMID 27606256.

Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, Woodcock J. Understanding pharmaceutical quality by design. AAPS J. 2014;16(4):771-83. doi: 10.1208/s12248-014-9598-3, PMID 24854893.

Pestieau A, Evrard B. In vitro biphasic dissolution tests and their suitability for establishing in vitro-in vivo correlations: A historical review. Eur J Pharm Sci. 2017;102:203-19. doi: 10.1016/j.ejps.2017.03.019, PMID 28315463.

O’Dwyer PJ, Box KJ, Koehl NJ, Bennett Lenane H, Reppas C, Holm R, Kuentz M, Griffin BT. Novel biphasic lipolysis method to predict in vivo performance of lipid-based formulations. Mol Pharm. 2020;17(9):3342-52. doi: 10.1021/acs.molpharmaceut.0c00427, PMID 32787274.

Kaur L, Kaur T, Singh AP, Singh AP. “Formulation development and solubility enhancement of rosuvastatin calcium by using hydrophilic polymers and solid dispersion method”. Int J Curr Pharm Sci 2021;13(6):50-5. doi: 10.22159/ijcpr.2021v13i6.1910.

Phillips DJ, Pygall SR, Cooper VB, Mann JC. Toward biorelevant dissolution: application of a biphasic dissolution model as a discriminating tool for HPMC matrices containing a model BCS class II drug. Diss Technol. 2012;19(1):25-34. doi: 10.14227/DT190112P25.

Wagh MP, Patel JS. Biopharmaceutical classification system: scientific basis for biowaiver extensions. Int J Pharm Pharm Sci. 2010;2(1):12-9.

Sawant G, Bhagwat G. Niosomes as an approach to improve the solubility and bioavailability of BCS class II drugs. Int J Appl Pharm. 2021;13(2):94-101. doi: 10.22159/ijap.2021v13i2.40423.

Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. The biopharmaceutics classification system: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur J Pharm Sci. 2014;57:152-63. doi: 10.1016/j.ejps.2014.01.009, PMID 24486482.

Tsume Y, Igawa N, Drelich AJ, Amidon GE, Amidon GL. The combination of GIS and biphasic to better predict in vivo dissolution of BCS Class IIb drugs, ketoconazole and raloxifene. J Pharm Sci. 2018;107(1):307-16. doi: 10.1016/ j.xphs.2017.09.002, PMID 28919384.

Zhou D, Qiu Y. Understanding biopharmaceutics properties for pharmaceutical product development and manufacturing II: Dissolution and in vitro-in vivo correlation. J Validation Technol. 2010:57-70.

Al Durdunji AA, Alkhatib HS, Al-Ghazawi M. Development of a biphasic dissolution test for deferasirox dispersible tablets and its application in establishing an in vitro-in vivo correlation. Eur J Pharm Biopharm. 2016;102:9-18. doi: 10.1016/ j.ejpb.2016.02.006, PMID 26898545.

Denninger A, Westedt U, Rosenberg J, Wagner KG. A rational design of a biphasic dissolution setup-modeling of biorelevant kinetics for a ritonavir hot-melt extruded amorphous solid dispersion. Pharmaceutics. 2020;12(3):1-23. doi: 10.3390/pharmaceutics12030237, PMID 32155962.

Silva DA, Al-Gousous J, Davies NM, Chacra NB, Webster GK, Lipka E, Amidon GL, Lobenberg R. Biphasic dissolution as an exploratory method during early drug product development. Pharmaceutics. 2020;12(5):1-17. doi: 10.3390/ pharmaceutics12050420, PMID 32370237.

Phillips DJ, Pygall SR, Cooper VB, Mann JC. Overcoming sink limitations in dissolution testing: a review of traditional methods and the potential utility of biphasic systems. J Pharm Pharmacol. 2012;64(11):1549-59. doi: 10.1111/j.2042-7158.2012.01523.x, PMID 23058042.

Krieg BJ, Taghavi SM, Amidon GL, Amidon GE. In vivo predictive dissolution: comparing the effect of bicarbonate and phosphate buffer on the dissolution of weak acids and weak bases. J Pharm Sci. 2015;104(9):2894-904. doi: 10.1002/jps.24460, PMID 25980464.

Sakore S, Chakraborty B. In vitro-in vivo correlation (IVIVC): A strategic tool in drug development. J Bioequiv Availab. 2011;8(4):1-12.

Deng J, Staufenbiel S, Hao S, Wang B, Dashevskiy A, Bodmeier R. Development of a discriminative biphasic in vitro dissolution test and correlation with in vivo pharmacokinetic studies for differently formulated racecadotril granules. J Control Release. 2017;255:202-9. doi: 10.1016/j.jconrel.2017.04.034, PMID 28450206.

Nainar S, Rajiah K, Angamuthu S, Prabakaran D, Kasibhatta R. Biopharmaceutical classification system in in vitro in vivo correlation: concept and development strategies in drug delivery. Trop J Pharm Res. 2012;11(2):319-29.

Deng J, Staufenbiel S, Bodmeier R. Evaluation of a biphasic in vitro dissolution test for estimating the bioavailability of carbamazepine polymorphic forms. Eur J Pharm Sci. 2017;105:64-70. doi: 10.1016/j.ejps.2017.05.013, PMID 28487146.

Xu H, Shi Y, Vela S, Marroum P, Gao P. Developing quantitative in vitro-in vivo correlation for fenofibrate immediate-release formulations with the biphasic dissolution-partition test method. J Pharm Sci. 2018;107(1):476-87. doi: 10.1016/j.xphs.2017.06.018, PMID 28666964.

Uppoor VRS. Regulatory perspectives on in vitro (dissolution)/in vivo (bioavailability) correlations. J Control Release. 2001;72(1-3):127-32. doi: 10.1016/s0168-3659(01)00268-1, PMID 11389991.

Qureshi SA. In vitro-in vivo correlation (IVIVC) and determining drug concentrations in blood from dissolution testing: A simple and practical approach. Open Drug Deliv J. 2010;4(2):38-47.

Cardot JM, Beyssac E, Alric M. In vitro-in vivo correlation: importance of dissolution in IVIVC. Diss Technol. 2007;14(1):15-9. doi: 10.14227/DT140107P15.

Gonzalez Alvarez I, Bermejo M, Tsume Y, Ruiz Picazo A, Gonzalez Alvarez M, Hens B, Garcia Arieta A, Amidon GE, Amidon GL. An in vivo predictive dissolution methodology (iPD methodology) with a BCS Class IIb drug can predict the in vivo bioequivalence results: Etoricoxib products. Pharmaceutics. 2021;13(4):1-12. doi: 10.3390/pharmaceutics13040507.

Tlijani M, Lassoued MA, Bahloul B, Sfar S. Development of a BCS Class II drug microemulsion for oral delivery: design, optimization, and evaluation. J Nanomater. 2021;2021:1-9. doi: 10.1155/2021/5538940.

Nasir S, Hussain A, Abbas N, Bukhari NI, Hussain F, Arshad MS. Improved bioavailability of oxcarbazepine, a BCS class II drug by centrifugal melt spinning: In-vitro and in-vivo implications. Int J Pharm. 2021;604(3):120775. doi: 10.1016/j.ijpharm.2021.120775, PMID 34098052.

Kasekar NM, Singh S, Jadhav KR, Kadam VJ. BCS class II drug-loaded protein nanoparticles with enhanced oral bioavailability: in vitro evaluation and in vivo pharmacokinetic study in rats. Drug Dev Ind Pharm. 2020;46(6):955-62. doi: 10.1080/03639045.2020.1764021, PMID 32362144.

Sandhya P, Poornima P, Bhikshapathi DVRN. Self nano emulsifying drug delivery system of sorafenib tosylate: development and in vivo studies. Pharm Nanotechnol. 2020;8(6):471-84. doi: 10.2174/2211738508666201016151406, PMID 33069205.

Bhargav E, Barghav GC, Reddy YP, kumar CP, Ramalingam P, Haranath C. A design of experiment (DoE) based approach for development and optimization of nanosuspensions of telmisartan, a BCS class II antihypertensive drug. Future J Pharm Sci. 2020;6(1):1-13.

Marapur SC, Jat RK, Patil JS. Formulation and development of some BCS class II drugs. J Drug Deliv Ther. 2019;9(2):321-9. doi: 10.22270/jddt.v9i2.2424.

Kim TH, Shin S, Jeong SW, Lee JB, Shin BS. Physiologically relevant in vitro-in vivo correlation (IVIVC) approach for sildenafil with site-dependent dissolution. Pharmaceutics. 2019;11(6):1-9. doi: 10.3390/pharmaceutics11060251, PMID 31159390.

Sunitha R, Venugopal K, Satyanarayana SV. Formulation and development studies on enhancement of dissolution rate of BCS class II antidiabetic drug. Int J Drug Dev Res. 2018;10(3):1-6.

Hamed R, Awadallah A, Sunoqrot S, Tarawneh O, Nazzal S, AlBaraghthi T, Al Sayyad J, Abbas A. PH-dependent solubility and dissolution behavior of carvedilol-case example of a weakly basic BCS Class II drug. AAPS PharmSciTech. 2016;17(2):418-26. doi: 10.1208/s12249-015-0365-2, PMID 26202065.

Deshmukh S, Avachat A, Garka A, Khurana N, Cardot JM. Optimization of a dissolution method in early development based on IVIVC using small animals: application to a BCS class II drug. Diss Technol. 2016;23(4):34-41. doi: 10.14227/DT230416P34.

Nader AM, Quinney SK, Fadda HM, Foster DR. Effect of gastric fluid volume on the in vitro dissolution and in vivo absorption of BCS class II drugs: A case study with nifedipine. AAPS J. 2016;18(4):981-8. doi: 10.1208/s12248-016-9918-x, PMID 27106837.

Jambhekar SS, Breen PJ. Drug dissolution: significance of physicochemical properties and physiological conditions. Drug Discov Today. 2013;18(23-24):1173-84. doi: 10.1016/j.drudis.2013.08.013, PMID 24042023.

Blanquet S, Zeijdner E, Beyssac E, Meunier JP, Denis S, Havenaar R, Alric M. A dynamic artificial gastrointestinal system for studying the behavior of orally administered drug dosage forms under various physiological conditions. Pharm Res. 2004;21(4):585-91. doi: 10.1023/ b:pham.0000022404.70478.4b, PMID 15139514.

Tsume Y, Takeuchi S, Matsui K, Amidon GE, Amidon GL. In vitro dissolution methodology, mini-gastrointestinal simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib. Eur J Pharm Sci. 2015;76:203-12. doi: 10.1016/j.ejps.2015.05.013, PMID 25978875.

Garbacz G, Wedemeyer RS, Nagel S, Giessmann T, Monnikes H, Wilson CG, Siegmund W, Weitschies W. Irregular absorption profiles observed from diclofenac extended-release tablets can be predicted using a dissolution test apparatus that mimics in vivo physical stresses. Eur J Pharm Biopharm. 2008;70(2):421-8. doi: 10.1016/j.ejpb.2008.05.029, PMID 18582568.

Koziolek M, Gorke K, Neumann M, Garbacz G, Weitschies W. Development of a bio-relevant dissolution test device simulating mechanical aspects present in the fed stomach. Eur J Pharm Sci. 2014;57(57):250-6. doi: 10.1016/j.ejps.2013.09.004, PMID 24051217.

Li ZQ, He X, Gao XM, Xu YY, Wang YF, Gu H, Ji RF, Sun SJ. Study on dissolution and absorption of four dosage forms of isosorbide mononitrate: level a in vitro-in vivo correlation. Eur J Pharm Biopharm. 2011;79(2):364-71. doi: 10.1016/j.ejpb.2011.04.015, PMID 21569844.

Shi Y, Gao P, Gong Y, Ping H. Application of a biphasic test for characterization of in vitro drug release of immediate-release formulations of celecoxib and its relevance to in vivo absorption. Mol Pharm. 2010;7(5):1458-65. doi: 10.1021/mp100114a, PMID 20704265.

Vertzoni M, Diakidou A, Chatzilias M, Soderlind E, Abrahamsson B, Dressman JB, Reppas C. Biorelevant media to simulate fluids in the ascending colon of humans and their usefulness in predicting intracolonic drug solubility. Pharm Res. 2010;27(10):2187-96. doi: 10.1007/s11095-010-0223-6, PMID 20676736.

Kou D, Zhang C, Yiu H, Ng T, Lubach JW, Janson M, Mao C, Durk M, Chinn L, Winter H, Wigman L, Yehl P. In vitro, in silico, and in vivo assessments of intestinal precipitation and its impact on the bioavailability of a BCS class 2 basic compound. Mol Pharm. 2018;15(4):1607-17. doi: 10.1021/acs.molpharmaceut.7b01143, PMID 29522347.

Buchwald P. Direct, differential-equation-based in vitro-in vivo correlation (IVIVC) method. J Pharm Pharmacol. 2003;55(4):495-504. doi: 10.1211/002235702847, PMID 12803771.

Tsume Y. Dissolution effect of gastric and intestinal pH fora BCS class II drug, pioglitazone: new in vitro dissolution system to predict in vivo dissolution. J Bioequiv Availab 2013;5(6):224-7. doi: 10.4172/jbb.1000162.

Sirisuth N, Eddington ND. In vitro in vivo correlations, systemic methods for the development and validation of an IVIVC metoprolol and naproxen drug examples. Int J Generic Drugs. 2002;3:250-8.

Zaborenko N, Shi Z, Corredor CC, Smith Goettler BM, Zhang L, Hermans A, Neu CM, Alam MA, Cohen MJ, Lu X, Xiong L, Zacour BM. First-principles and empirical approaches to predicting in vitro dissolution for pharmaceutical formulation and process development and for product release testing. AAPS J. 2019;21(3):32. doi: 10.1208/s12248-019-0297-y, PMID 30790200.

Mitra A, Kesisoglou F, Dogterom P. Application of absorption modeling to predict bioequivalence outcome of two batches of etoricoxib tablets. AAPS PharmSciTech. 2015;16(1):76-84. doi: 10.1208/s12249-014-0194-8, PMID 25182387.

Dokoumetzidis A, Macheras P. A century of dissolution research: from noyes and whitney to the biopharmaceutics classification system. Int J Pharm. 2006;321(1-2):1-11. doi: 10.1016/j.ijpharm.2006.07.011, PMID 16920290.

Chen Y, Jiao T, McCall TW, Baichwal AR, Meyer MC. Comparison of four artificial neural network software programs used to predict the in vitro dissolution of controlled-release tablets. Pharm Dev Technol. 2002;7(3):373-9. doi: 10.1081/pdt-120005733, PMID 12229268.

Lennernas H, Lindahl A, Van Peer AV, Ollier C, Flanagan T, Lionberger R, Nordmark A, Yamashita S, Yu L, Amidon GL, Fischer V, Sjogren E, Zane P, McAllister M, Abrahamsson B. In vivo predictive dissolution (IPD) and biopharmaceutical modeling and simulation: future use of modern approaches and methodologies in a regulatory context. Mol Pharm. 2017;14(4):1307-14. doi: 10.1021/acs.molpharmaceut. 6b00824, PMID 28195732.

Carino SR, Sperry DC, Hawley M. Relative bioavailability estimation of carbamazepine crystal forms using an artificial stomach-duodenum model. J Pharm Sci. 2006;95(1):116-25. doi: 10.1002/jps.20495. PMID 16315223.

Vatier J, Celice Pingaud C, Farinotti R. Interests of the ‘artificial stomach’ techniques to study antacid formulations: comparison with in vivo evaluation. Fundam Clin Pharmacol. 1998;12(6):573-83. doi: 10.1111/j.1472-8206.1998.tb00989.x, PMID 9818289.

Vatier J, Malikova Sekera E, Vitre MT, Mignon M. An artificial stomach-duodenum model for the in vitro evaluation of antacids. Aliment Pharmacol Ther. 1992;6(4):447-58. doi: 10.1111/j.1365-2036.1992.tb00558.x, PMID 1420737.

Polster CS, Atassi F, Wu SJ, Sperry DC. Use of artificial stomach-duodenum model for investigation of dosing fluid effect on clinical trial variability. Mol Pharm. 2010;7(5):1533-8. doi: 10.1021/mp100116g, PMID 20669969.

Garbacz G, Kandzi A, Koziolek M, Mazgalski J, Weitschies W. Release characteristics of quetiapine fumarate extended-release tablets under bio relevant stress test conditions. AAPS PharmSciTech. 2014;15(1):230-6. doi: 10.1208/s12249-013-0050-2, PMID 24297600.

Garbacz G, Klein S, Weitschies W. A biorelevant dissolution stress test device - background and experiences. Expert Opin Drug Deliv. 2010;7(11):1251-61. doi: 10.1517/ 17425247.2010.527943, PMID 20977290.

Alegria A, Garcia Llatas G, Cilla A. Static digestion models: general introduction. In: Verhoeckx K, Cotter P, Lopez Exposito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H, editors. The impact of food bio-actives on health: in vitro and ex vivo models. The Netherlands: TNO-Zeist; 2015. p. 3-15.

Dupont D, Alric M, Blanquet Diot S, Bornhorst G, Cueva C, Deglaire A, Denis S, Ferrua M, Havenaar R, Lelieveld J, Mackie AR, Marzorati M, Menard O, Minekus M, Miralles B, Recio I, Van den Abbeele PVD. Can dynamic in vitro digestion systems mimic the physiological reality? Crit Rev Food Sci Nutr. 2019;59(10):1546-62. doi: 10.1080/10408398.2017.1421900, PMID 29359955.

Barker R, Abrahamsson B, Kruusmägi M. Application and validation of an advanced gastrointestinal in vitro model for the evaluation of drug product performance in pharmaceutical development. J Pharm Sci. 2014;103(11):3704-12. doi: 10.1002/jps.24177, PMID 25223814.

Naylor TA, Connolly PC, Martini LG, Elder D, Minekus M, Havenaar R, Zeijdner E. Use of a gastro-intestinal model and GastroPLUS for the prediction of in vivo performance. J Appl Ther Res. 2006;6(1):15-9.

O’Driscoll CMO, Griffin BT. Biopharmaceutical challenges associated with drugs with low aqueous solubility-the potential impact of lipid-based formulations. Adv Drug Deliv Rev. 2008;60(6):617-24. doi: 10.1016/j.addr.2007.10.012, PMID 18155800.

Kuentz M. Lipid-based formulations for oral delivery of lipophilic drugs. Drug Discov Today Technol. 2012;9(2):e97-e104. doi: 10.1016/j.ddtec.2012.03.002.

Müllertz A, Ogbonna A, Ren S, Rades T. New perspectives on lipid and surfactant-based drug delivery systems for oral delivery of poorly soluble drugs. J Pharm Pharmacol. 2010;62(11):1622-36. doi: 10.1111/j.2042-7158.2010.01107.x, PMID 21039546.

Mu H, Holm R, Mullertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm. 2013;453(1):215-24. doi: 10.1016/j.ijpharm.2013.03.054, PMID 23578826.

Hauss DJ. Oral lipid-based formulations. Adv Drug Deliv Rev. 2007;59(7):667-76. doi: 10.1016/j.addr.2007.05.006, PMID 17618704.

Feeney OM, Crum MF, McEvoy CL, Trevaskis NL, Williams HD, Pouton CW, Charman WN, Bergstrom CAS, Porter CJH. 50 y of oral lipid-based formulations: Provenance, progress and future perspectives. Adv Drug Deliv Rev. 2016;101:167-94. doi: 10.1016/j.addr.2016.04.007.

Griffin BT, Kuentz M, Vertzoni M, Kostewicz ES, Fei Y, Faisal W, Stillhart C, O’Driscoll CM, Reppas C, Dressman JB. Comparison of in vitro tests at various levels of complexity for the prediction of in vivo performance of lipid-based formulations: case studies with fenofibrate. Eur J Pharm Biopharm. 2014;86(3):427-37. doi: 10.1016/j.ejpb.2013.10.016, PMID 24184675.

Stillhart C, Kuentz M. Trends in the assessment of drug supersaturation and precipitation in vitro using lipid-based delivery systems. J Pharm Sci. 2016;105(9):2468-76. doi: 10.1016/j.xphs.2016.01.010, PMID 26935881.

Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60(6):625-37. doi: 10.1016/j.addr.2007.10.010, PMID 18068260.

Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res. 2004;21(2):201-30. doi: 10.1023/b:pham.0000016235.32639.23, PMID 15032302.

Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29(3-4):278-87. doi: 10.1016/j.ejps.2006.04.016, PMID 16815001.

Williams HD, Sassene P, Kleberg K, Calderone M, Igonin A, Jule E, Vertommen J, Blundell R, Benameur H, Mullertz A, Porter CJH, Pouton CW, Communicated on Behalf of the LFCS Consortium. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 4: Proposing a new lipid formulation performance classification system. J Pharm Sci. 2014;103(8):2441-55. doi: 10.1002/jps.24067, PMID 24985238.

Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-micro emulsifying drug delivery systems. Eur J Pharm Sci. 2000;11(2) Suppl 2:S93-8. doi: 10.1016/s0928-0987(00)00167-6, PMID 11033431.

Williams HD, Sassene P, Kleberg K, Bakala-N’Goma JC, Calderone M, Jannin V, Igonin A, Partheil A, Marchaud D, Jule E, Vertommen J, Maio M, Blundell R, Benameur H, Carriere F, Mullertz A, Porter CJH, Pouton CW. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 1: Method parameterization and comparison of in vitro digestion profiles across a range of representative formulations. J Pharm Sci. 2012;101(9):3360-80. doi: 10.1002/jps.23205, PMID 22644939.

Stillhart C, Imanidis G, Griffin BT, Kuentz M. Biopharmaceutical modeling of drug supersaturation during lipid-based formulation digestion considering an absorption sink. Pharm Res. 2014;31(12):3426-44. doi: 10.1007/s11095-014-1432-1, PMID 24962509.

Thomas N, Richter K, Pedersen TB, Holm R, Müllertz A, Rades T. In vitro lipolysis data does not adequately predict the in vivo performance of lipid-based drug delivery systems containing fenofibrate. AAPS J. 2014;16(3):539-49. doi: 10.1208/s12248-014-9589-4, PMID 24687210.

Sassene PJ, Michaelsen MH, Mosgaard MD, Jensen MK, Van Den Broek EVD, Wasan KM, Mu H, Rades T, Müllertz A. In vivo precipitation of poorly soluble drugs from lipid-based drug delivery systems. Mol Pharm. 2016;13(10):3417-26. doi: 10.1021/acs.molpharmaceut.6b00413, PMID 27533712.

Kilic M, Dressman J. A simplified method to screen for in-vivo performance of oral lipid formulations. J Pharm Pharmacol. 2014;66(5):615-23. doi: 10.1111/jphp.12182, PMID 24313318.

Tsume Y, Igawa N, Drelich AJ, Ruan H, Amidon GE, Amidon GL. The in vivo predictive dissolution for immediate release dosage of donepezil and danazol, BCS class IIc drugs, with the GIS and the USP II with biphasic dissolution apparatus. J Drug Deliv Sci Technol. 2020;56(Part B):3-36. doi: 10.1016/j.jddst.2019.01.035.

Jantratid E, Dressman JB. Biorelevant dissolution media simulating the proximal human gastrointestinal tract: A update. Diss Technol. 2009;16(3):21-5. doi: 10.14227/DT160309P21.

Fan X, Shi S, He J, Deng J, Ji J. Development of in vivo predictive pH-gradient biphasic dissolution test for weakly basic drugs: optimization by orthogonal design. Diss Technol. 2021;28(3):24-9. doi: 10.14227/DT280321P24.

Klein S. The use of biorelevant dissolution media to forecast the in vivo performance of a drug. AAPS J. 2010;12(3):397-406. doi: 10.1208/s12248-010-9203-3, PMID 20458565.

Franc A, Museliłk J, Gonec R, Vetchy D. Biphasic dissolution method for quality control and assurance of drugs containing active substances in the form of weak acid salts. Acta Pharm. 2016;66(1):139-45. doi: 10.1515/acph-2016-0010, PMID 26959550.

Carlert S, Paalsson A, Hanisch G, von Corswant CV, Nilsson C, Lindfors L, Lennernas H, Abrahamsson B. Predicting intestinal precipitation--a case example for a basic BCS class II drug. Pharm Res. 2010;27(10):2119-30. doi: 10.1007/s11095-010-0213-8, PMID 20717839.

Amidon KS, Langguth P, Lennernäs H, Yu L, Amidon GL. Bioequivalence of oral products and the biopharmaceutics classification system: science, regulation, and public policy. Clin Pharmacol Ther. 2011;90(3):467-70. doi: 10.1038/clpt.2011.109, PMID 21775984.

Anishetty R, Singh SK, Garg V, Singare DS, Yadav A, Gulati M, Kumar B, Pandey NK, Narang R, Mittal A. Discriminatory potential of biphasic medium over compendial and biorelevant medium for assessment of dissolution behavior of tablets containing meloxicam nanoparticles. Asian J Pharm Clin Res. 2016;9(4):253-64.

Manikandan M, Kannan K. Study on in vivo release and in vivo absorption of camptothecin-loaded polymeric nanoparticles: level a in vitro-in vivo correlation. Asian J Pharm Clin Res. 2016;9(3):71-4.

Jaber E, Emami J. In vitro-in vivo correlation: from theory to applications. J Pharm Pharm Sci. 2006;9(2):169-89. PMID 16959187.

Published

01-04-2022

How to Cite

SARKAR, P., S. DAS, and S. B. MAJEE. “BIPHASIC DISSOLUTION MODEL: NOVEL STRATEGY FOR DEVELOPING DISCRIMINATORY IN VIVO PREDICTIVE DISSOLUTION MODEL FOR BCS CLASS II DRUGS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 14, no. 4, Apr. 2022, pp. 20-27, doi:10.22159/ijpps.2022v14i4.44042.

Issue

Section

Review Article(s)