ANTIMYCOBACTERIAL, ANTIMICROBIAL AND ANTIFUNGAL ACTIVITIES OF GERANIUM OIL-LOADED NANO CAPSULES

Authors

  • Janice Luehring Giongo Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil. Laboratório de Tecnologia Farmacêutica, Universidade Regional Integrada do Alto Uruguai, URI, Santiago, Rio Grande do Sul, Brazil.
  • Rodrigo De Almeida Vaucher Laboratório de Nanotecnologia, Programa de Pós-Graduação em Nanociências, UNIFRA, Santa Maria, Rio Grande do Sul, Brazil. Laboratório de Pesquisa em Microbiologia, Ciências da Saúde, Centro Universitário Franciscano, UNIFRA, Santa Maria, Rio Grande do Sul, Brazil.
  • Diego Borin Laboratório de Nanotecnologia, Programa de Pós-Graduação em Nanociências, UNIFRA, Santa Maria, Rio Grande do Sul, Brazil.
  • MARCOS SALDANHA CORREA Laboratório de Pesquisa em Microbiologia, Ciências da Saúde, Centro Universitário Franciscano, UNIFRA, Santa Maria, Rio Grande do Sul, Brazil.
  • Victor Barboza Dos Santos Laboratório de Pesquisa em Microbiologia, Ciências da Saúde, Centro Universitário Franciscano, UNIFRA, Santa Maria, Rio Grande do Sul, Brazil.
  • Roberto Christ Vianna Santos Laboratório de Nanotecnologia, Programa de Pós-Graduação em Nanociências, UNIFRA, Santa Maria, Rio Grande do Sul, Brazil. Laboratório de Pesquisa em Microbiologia, Ciências da Saúde, Centro Universitário Franciscano, UNIFRA, Santa Maria, Rio Grande do Sul, Brazil.
  • Aline Augusti Boligon Laboratório de Fitoquímica, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.
  • Margareth Linde Athayde Laboratório de Fitoquímica, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.
  • Pauline Cordenonzi Bonez Laboratório de Micobacteriologia, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.
  • Grazielle Guidolin Rossi Laboratório de Micobacteriologia, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.
  • Marli Matiko Anrako De Campus Laboratório de Micobacteriologia, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.
  • Patricia Gomes Laboratório de Nanotecnologia, Programa de Pós-Graduação em Nanociências, UNIFRA, Santa Maria, Rio Grande do Sul, Brazil
  • Martin Steppe Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.

Keywords:

Nano capsule, Geranium oil, Antimycobacterial, Antimicrobial, Antifungal, Nanotechnology

Abstract

Objective: The aim of this study was to perform the first ever investigation of the effect of activities in the nano capsules containing Geranium oil (NC1) against different species of pathogens such as Mycobacterium genus (both fast growing and slow growing), bacterial, and yeasts.

Methods: The GO was analyzed by GC and GC/MS. Nano capsule suspensions (NC) were prepared by interfacial deposition of a preformed polymer method and the MICs were determined for the antimycobacterial, antimicrobial, and antifungal activities.

Results: GO-loaded nano capsules (NC1) presented nano metric mean diameters (188 nm), polydispersity indices below 0.149, pH (5.5), and zeta potentials (about-10.8 mV). The MICs were determined for the antimycobacterial, antimicrobial, and antifungal activities. The NC1 was effective to Mycobacterium smegmatis (149.7 µg ml-1), M. abscessos (35.9 µg ml-1), M. massiliense (35.9 µg ml-1), M. avium (71.8 µg ml-1), Enterococcus faecalis, Streptococcus sp. (149.7 µg ml-1) and Listeria monocytogenes (35.9 µg ml-1). The NC1 was able to significantly reduce the number of cells of C. albicans (by approximately 5 log), 4 log the number of cells of C. dublinensis, C. glabrata, and C. krusei, and 2 log the number of cells of C. parapsilosis compared to the control group.

Conclusion: Our study showed that the geranium oil-loaded nano capsules have antimycobacterial activities similar to free oil. The GO was effective in inhibiting the formation of germ tubes of Candida albicans, yet the nano capsule containing GO failed to inhibit the formation of this important virulence factor.

 

Downloads

Download data is not yet available.

Author Biography

Rodrigo De Almeida Vaucher, Laboratório de Nanotecnologia, Programa de Pós-Graduação em Nanociências, UNIFRA, Santa Maria, Rio Grande do Sul, Brazil. Laboratório de Pesquisa em Microbiologia, Ciências da Saúde, Centro Universitário Franciscano, UNIFRA, Santa Maria, Rio Grande do Sul, Brazil.

Health SciencesHealth Sciences

References

Santos AO, Izumi E, Ueda-Nakamura T, Dias-Filho BP, Veiga-Júnior VF, Nakamura CV. Antileishmanial activity of diterpene acids in copaiba oil. Mem Inst Oswaldo Cruz 2013;108 (1):59-64.

Pereira TB, Rocha E, Silva LF, Amorim RC, Melo MR, Zacardi de Souza RC, et al. In vitro and in vivo anti-malarial activity of limonoids isolated from the residual seed biomass from Carapa guianensis (andiroba) oil production. Malar J 2014;13:13-317.

Azeredo CM, Santos TG, Maia BH, Soares MJ. In vitro biological evaluation of eight different essential oils against Trypanosoma cruzi, with emphasis on Cinnamomum verum essential oil. BMC Complement Altern Med 2014;22:14-309.

Bagherani N, Smoller BR. Role of tea tree oil in treatment of acne. Dermatol Ther 2015;26. doi: 10.1111/dth.12235 [Epub ahead of print].

Yang C, Hu DH, Feng Y. Antibacterial activity and mode of action of the Artemisia capipparis essential oil and its constituents against respiratory tract infection-causing pathogens. Mol Med Rep 2015;11(4):2852-60.

Guerra-Boone L, Alvarez-Román R, Alvarez-Román R, Salazar-Aranda R, Torres-Cirio A, Rivas-Galindo VM, et al. Antimicrobial and antioxidant activities and chemical characterization of essential oils of Thymus vulgaris, Rosmarinus officinalis, and Origanum majorana from northeastern México. Pak J Pharm Sci 2015;28:363-9.

Malik T, Singh P. Antibacterial effects of essentials oils against uropathogens with varying sensitivity to antibiotics. Asian J Biol Sci 2010;3(2):92–8.

Reichling J, Schnitzler P, Suschke U, Saller R. Essential oils of aromatic plants with antibacterial, Antifungal, Antiviral, and Cytotoxic Properties–An overview. Forsch Komplementmed 2009;16:79-90.

Boukhris M, Bouaziz M, Feki I, Jemai H, El Feki A, Sayadi S. Hypoglycemic and antioxidant effects of leaf essential oil of Pelargonium graveolens L’Hér. in alloxan induced diabetic rats. Lipids Health Dis 2012;11:81.

Mora-Huertas CE, Fessi H, Elaissori A. Polymer-based nano capsules for drug delivery. Int J Pharm 2010;385:113-42.

Zhang L, Pornpattananangkul D, Hu CMJ, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 2010;17:585-94.

Schaffazick SR, Guterres SS, Freitas LL, Pohlmann AR. Physicochemical characterization and stability of the polymeric nanoparticle systems for drug administration. Quim Nova 2003;26:726-37.

Desnos-Ollivier M, Robert V, Raoux-Barbot D, Groenewald M, Dromer F. Antifungal susceptibility profiles of 1698 yeast reference strains revealing potential emerging human pathogens. PLoS One 2012;7(3):e32278.

Souza ME, L Quintana Soares Lopes, LQS Vaucher RA, Mário DN, Alves SH, Agertt VA, et al. Antimycobacterial and antifungal activities of Melaleuca alternifolia oil nanoparticles. J Drug Delivery Sci Technol 2014;24(5):559-60.

BiaÅ‚oÅ„ M, KrzyÅ›ko-Åupicka T, KoszaÅ‚kowska M, Wieczorek PP. The influence of chemical composition of commercial lemon essential oils on the growth of Candida strains. Mycopathologia 2014;177(1-2):29-39.

Warnock DW. Trends in the epidemiology of invasive fungal infections. Nihon Ishinkin Gakkai Zasshi 2007;48(1):1-12.

Calderone RA. Candida and Candidosis. Source: Emerg Infect Dis 2002;8(8):876-7.

Cowen LE, Sanglard D, Calabrese D. Evolution of drug resistance in experimental populations of Candida albicans. J Bacteriol 2000;182(6):1515-22.

Zore GB, Thakre AD, Rathod V, Karuppayil SM. Evaluation of anti-Candida potential of geranium oil constituents against clinical isolates of Candida albicans differentially sensitive to fluconazole: inhibition of growth, dimorphism and sensitization. Mycoses 2011;54(4):99-109.

Zhao XL, Yang CR, Yang KL, Li KX, Hu HY, Chen DW. Preparation and characterization of nanostructured lipid carriers loaded traditional Chinese medicine, zedoary turmeric oil. Drug Dev Ind Pharm 2010;36(7):773–80.

Yao G, Li Y. Preparation, characterization, and evaluation of self-microemulsifying drug delivery systems (SMEDDSs) of Ligusticum chuanxiong oil. Biomed Pharmacother 2011;1(1):36–42.

Shi F, Zhao JH, Liu Y, Wang Z, Zhang YT, Feng NP. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. Int J Nanomed 2012;7:2033-43.

Szweda P, Gucwa K, Kurzyk E, Romanowska E, Dzierżanowska-Fangrat K, Zielińska Jurek A, et al. Essential oils, Silver nanoparticles and propolis as alternative agents against fluconazole resistant Candida albicans, Candida glabrata and Candida krusei Clinical Isolates. Indian J Microbiol 2015;55(2):175-83.

Adams RP. Identification of essential oil components by gas. Chromatography/Mass spectroscopy. Allured Publishing Corporation: Illinois USA; 1995. p. 456.

Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard. 6th ed. document M7-A6. Wayne, PA, USA; 2003.

Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard, 7th ed. document M7-A7. Wayne PA, USA; 2006.

Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts: M27-A3. Wayne PA USA; 2008.

Pfaller MA, Bale M, Buschelman B. Quality control guidelines for national committee for clinical laboratory standards-recommended broth macrodilution testing of amphotericin B, fluconazole, and flucytosine. J Clin Microbiol 1995;33:1104-7.

Rex JH, Pfaller MA, Lancaster M, Odds F, Bolmström A, Rinaldi G. Quality control guidelines for national committee for clinical laboratory standards-recommended broth macrodilution testing of ketoconazole and itraconazole. J Clin Microbiol 1996;34:816-7.

Boukhatem MN, Kameli A, Amine M, Saidi F, Mekarnia M. Rose geranium essential oil as a source of new and safe anti-inflammatory drugs. Libyan J Med 2013;8:22520.

Rao BR, Kaul PN, Syamasundar KV, Ramesh S. Water soluble fractions of rose-scented geranium (Pelargonium species) essential oil. Bioresour Technol 2002;84(3):243-6.

Verma RS, Rahman LU, Verma RK, Chauhan A, Singh A. Essential oil composition of Pelargonium graveolens L'Her ex Ait. cultivars harvested in different seasons. J Essent Oil Res 2013;6:1–8.

Lis-Balchin M, Deans SG, Hart S. Bioactive Geranium oils from different commercial sources. J Essent Oil Res 2007;8:281–90.

Shawl AS, Kumar T, Chishi N, Shabir S. Cultivation of rose scented Geranium (Pelargonium sp.) as a cash crop in Kasmir Valley. Asian J Plant Sci 2006;5:673–5.

Flores FC, Ribeiro RF, Ourique AF, Rolim CMB, Silva CB. Nanostructured systems containing an essential oil: protection against volatilization. Quim Nova 2011;4(6):968-72.

Bigo M, Wasiela M, Kalemba D, Sienkiewicz M. Antimicrobial activity of geranium oil against clinical strains of Staphylococcus aureus. Molecules 2012;17(9):10276-91.

Prabuseenivasan S, Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med 2006;30:6-39.

Sienkiewicz M, Poznańska-Kurowska K, Kaszuba A, Kowalczyk E. The antibacterial activity of geranium oil against Gram-negative bacteria isolated from difficult-to-heal wounds. Burns 2014;40(5):1046-51.

Oliveira WA, de Oliveira PF, de Luna GC, Lima IO, Wanderley PA, de Lima RB, et al. Antifungal activity of Cymbopogon winterianus jowitt ex bor against Candida albicans. Braz J Microbiol 2011;42(2):433-41.

Cohen ML. Epidemiology of drug resistance: implications for a post-antimicrobial era. Sci 1992;21;257(5073):1050-5.

Budzyńska A, Sadowska B, Więckowska-Szakiel M, Różalsk B. Enzymatic profile, adhesive and invasive properties of Candida albicans under the influence of selected plant essential oils. Acta Biochim Pol 2014;61(1):115-21.

D'Auria FD, Tecca M, Strippoli V, Salvatore G, Battinelli L, Mazzanti G. Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Med Mycol 2005;43(5):391-6.

Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur J Pharm Biopharm 2000;50(1):161–77.

Anton N, Saulnier P, Benoit JP. Design and production of nanoparticles formulated from nanoemulsion templates: a review. J Controlled Release 2008;128(3):185-99.

Published

01-07-2015

How to Cite

Giongo, J. L., R. D. A. Vaucher, D. Borin, M. S. CORREA, V. B. Dos Santos, R. C. Vianna Santos, A. A. Boligon, M. L. Athayde, P. C. Bonez, G. G. Rossi, M. M. A. De Campus, P. Gomes, and M. Steppe. “ANTIMYCOBACTERIAL, ANTIMICROBIAL AND ANTIFUNGAL ACTIVITIES OF GERANIUM OIL-LOADED NANO CAPSULES”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, no. 7, July 2015, pp. 414-9, https://www.innovareacademics.in/journals/index.php/ijpps/article/view/5971.

Issue

Section

Original Article(s)

Most read articles by the same author(s)